当前位置:   article > 正文

数据结构——四叉树

四叉树

四叉树(Quadtree)是一种用于表示和管理二维空间的树状数据结构。它将二维空间递归地分割成四个象限,每个象限可以继续分割,以实现对空间的更精细的划分。四叉树通常用于解决空间搜索和查询问题,例如碰撞检测、图像压缩、地理信息系统等领域。
在这里插入图片描述
特别适合大规模的广阔室外场景管理。一般来说如果游戏场景是基于地形的(甚至没有高度)(如城市、平原、2D场景),那么适合用四叉树来管理。而如果游戏场景在高度轴上也有大量物体需要管理(如太空、高山),那么适合用八叉树来管理。

#include <iostream>

// 定义二维点的结构体
struct Point {
    float x;
    float y;
    Point(float _x, float _y) : x(_x), y(_y) {}
};

// 定义四叉树节点
struct QuadTreeNode {
    Point point;
    QuadTreeNode* topLeft;
    QuadTreeNode* topRight;
    QuadTreeNode* bottomLeft;
    QuadTreeNode* bottomRight;

    QuadTreeNode(Point _point) : point(_point), topLeft(nullptr), topRight(nullptr), bottomLeft(nullptr), bottomRight(nullptr) {}
};

class QuadTree {
private:
    QuadTreeNode* root;
    int maxDepth; // 最大深度

    // 在指定深度下递归插入节点
    QuadTreeNode* insert(QuadTreeNode* node, Point point, int depth) {
        if (node == nullptr) {
            return new QuadTreeNode(point);
        }

        // 根据点的位置选择象限
        if (point.x < node->point.x && point.y < node->point.y) {
            node->bottomLeft = insert(node->bottomLeft, point, depth + 1);
        } else if (point.x >= node->point.x && point.y < node->point.y) {
            node->bottomRight = insert(node->bottomRight, point, depth + 1);
        } else if (point.x < node->point.x && point.y >= node->point.y) {
            node->topLeft = insert(node->topLeft, point, depth + 1);
        } else {
            node->topRight = insert(node->topRight, point, depth + 1);
        }

        return node;
    }

    // 在指定深度下递归搜索节点
    bool search(QuadTreeNode* node, Point point, int depth) {
        if (node == nullptr) {
            return false;
        }

        if (node->point.x == point.x && node->point.y == point.y) {
            return true;
        }

        // 根据点的位置选择象限
        if (point.x < node->point.x && point.y < node->point.y) {
            return search(node->bottomLeft, point, depth + 1);
        } else if (point.x >= node->point.x && point.y < node->point.y) {
            return search(node->bottomRight, point, depth + 1);
        } else if (point.x < node->point.x && point.y >= node->point.y) {
            return search(node->topLeft, point, depth + 1);
        } else {
            return search(node->topRight, point, depth + 1);
        }
    }

public:
    QuadTree(float minX, float minY, float maxX, float maxY, int depth) : root(nullptr), maxDepth(depth) {}

    // 插入一个点
    void insert(Point point) {
        root = insert(root, point, 0);
    }

    // 搜索一个点是否存在
    bool search(Point point) {
        return search(root, point, 0);
    }
};

int main() {
    QuadTree quadtree(0.0f, 0.0f, 100.0f, 100.0f, 4); // 创建四叉树,定义边界和最大深度

    Point point1(10.0f, 20.0f);
    Point point2(80.0f, 90.0f);

    quadtree.insert(point1); // 插入点1
    quadtree.insert(point2); // 插入点2

    Point searchPoint(80.0f, 90.0f);
    bool found = quadtree.search(searchPoint); // 搜索点2
    if (found) {
        std::cout << "Point found in the quadtree." << std::endl;
    } else {
        std::cout << "Point not found in the quadtree." << std::endl;
    }

    return 0;
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/492934
推荐阅读
相关标签
  

闽ICP备14008679号