当前位置:   article > 正文

数据挖掘与机器学习_数据挖掘和机器学习

数据挖掘和机器学习

一. 机器学习的种类

1. 有监督的机器学习 :

        分类 :

  •                  KNN 最近邻
  •                  逻辑回归 - 朴素贝叶斯估计
  •                  SVM 线性 或 非线性 优化模型
  •                  决策树模型 - 随机森林 - 其它集成模型
  •                  lightGBM - XGBOOST

        回归:

  •                   线性
  •                  非线性
  •                  加权平均回归

2.无监督的机器学习 :

  •                  聚类
  •                 关联
  •                 特征处理

二.  KNN ( K最近邻 )

argmax()  # 只返回索引
  1. 特征值(Features):(特征数据必须是2维数据)

     特征值是用来描述样本的属性或特征的值。在KNN中,每个样本都被表示为一个特征向量,其中每个特征对应向量中的一个维度。例如,在一个二维空间中,特征向量可以由两个特征值构成,分别表示样本在X轴和Y轴上的坐标。
  2. 标签(Labels)

    标签是我们希望预测的值,或者是我们希望将样本分类到的类别。在分类问题中,每个样本都有一个类别标签,而在回归问题中,标签通常是一个连续的数值。在KNN中,我们使用已知的特征值和标签构建模型,然后根据新的特征值预测或分类其对应的标签。

  1. np.bincount([1,1,2,2,2,2,4,4,4,4]) # 看下标为几的出现几次
  2. 下标为0的 没有出现 0
  3. 下标为1,数字也为1的出现2
  4. 下标为2 数字也为2的出现4
  5. 下标为3,数字为30
  6. 下标为4,数字为34
  7. 答案是 (02404

三.  KNN运用(字符识别、文本分类、图像识别),通过你的邻居判断你是什么类别 

  1. # 选几个邻居 进行分类
  2. sklearn.neighbors.KNeighborsClassfier(n_neighbors=5)
  3. n_neighbors = 5 是默认的
  4. #获取数据
  5. x = [[1],[2],[0],[0]]
  6. y = [1,1,0,0]
  7. # 机器学习
  8. # 1. 实例化一个训练模型
  9. estimator = KNeighborsClassfier(n_neighbors=2)
  10. 2. 调用fit方法进行训练
  11. estimator.fit(x,y)
  12. 3. 预测其他值
  13. ret = estimator.predict([-1])
  14. print(ret)

四. K值的选取

  • K值过小: 过拟合,容易受异常点影响, 因为用较小的领域中训练实例进行预测
  • k值过大 :   欠拟合,容易受到样本均衡的问题

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/494503
推荐阅读
相关标签
  

闽ICP备14008679号