当前位置:   article > 正文

组基轨迹建模 GBTM的介绍与实现(Stata 或 R)_stata实现gbtm

stata实现gbtm

基本介绍

组基轨迹建模(Group-Based Trajectory Modeling,GBTM)(旧名称:Semiparametric mixture model)

历史:由DANIELS.NAGIN提出,发表文献《Analyzing Developmental Trajectories:A  Semiparametric,Group-Based Approach》

GBTM能够将一群人的轨迹分类并生成数个具有代表性的运动轨迹模型,然后对每个轨迹模型进行分析,以了解人们的运动特征、生理水平和风险等级等。GBTM的核心思想是将人群分成几组,每组中的人员都具有类似的运动规律,这些规律被用于描述和预测他们未来的运动轨迹,从而为个人和群体的健康管理提供更科学的依据。

  • 主要用于分析纵向数据,探索总体中的异质性
  • 原理:假定总体存在异质性,即总体中存在若干个不同发展轨迹或模式的潜在亚组
  • 目的:探索总体中包含有多少个发展趋势不同的亚组,并确定各亚组的发展轨迹
  • 轨迹的等级与形状由模型的回归参数决定,模型的回归参数通过最大似然比估计

组轨迹建模流程

组轨迹模型的建立是需要不断建立、反馈、修正的过程。
1.拟合1~6组轨迹模型,每个轨迹分别拟合线性、平方和立方
2.通过模型计算模型参数估计,剔除无意义的估计项,重新拟合。
3.通过比较不同模型间的拟合评价指标和专业可解释性选择合适的轨迹。
4.评价模型内充分性

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/534633
推荐阅读
  

闽ICP备14008679号