当前位置:   article > 正文

记录一个Arduino调用MPU6050的姿态解算算法代码_mpu6050姿态解算代码 arduino

mpu6050姿态解算代码 arduino

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录


Arduino风格代码

/* MPU6050 Basic Example with IMU
  by: Kris Winer
  date: May 10, 2014
  license: Beerware - Use this code however you'd like. If you
  find it useful you can buy me a beer some time.

  Demonstrate  MPU-6050 basic functionality including initialization, accelerometer trimming, sleep mode functionality as well as
  parameterizing the register addresses. Added display functions to allow display to on breadboard monitor.
  No DMP use. We just want to get out the accelerations, temperature, and gyro readings.

  SDA and SCL should have external pull-up resistors (to 3.3V).
  10k resistors worked for me. They should be on the breakout
  board.

  Hardware setup:
  MPU6050 Breakout --------- Arduino
  3.3V --------------------- 3.3V
  SDA ----------------------- A4
  SCL ----------------------- A5
  GND ---------------------- GND

  Note: The MPU6050 is an I2C sensor and uses the Arduino Wire library.
  Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
  We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file.
  We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ  to 400000L /twi.h utility file.
*/

#include <Wire.h>
#include "MPU6050lib.h"
MPU6050lib mpu;

float aRes, gRes; // scale resolutions per LSB for the sensors
// Pin definitions
int intPin = 12;  // These can be changed, 2 and 3 are the Arduinos ext int pins
#define blinkPin 13  // Blink LED on Teensy or Pro Mini when updating
boolean blinkOn = false;
int16_t accelCount[3];  // Stores the 16-bit signed accelerometer sensor output
float ax, ay, az;       // Stores the real accel value in g's
int16_t gyroCount[3];   // Stores the 16-bit signed gyro sensor output
float gyrox, gyroy, gyroz;       // Stores the real gyro value in degrees per seconds
float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
int16_t tempCount;   // Stores the real internal chip temperature in degrees Celsius
float temperature;
float SelfTest[6];
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};            // vector to hold quaternion
uint32_t delt_t = 0; // used to control display output rate
uint32_t count = 0;  // used to control display output rate
float pitch, yaw, roll;
// parameters for 6 DoF sensor fusion calculations
float GyroMeasError = PI * (40.0f / 180.0f);     // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
float beta = sqrt(3.0f / 4.0f) * GyroMeasError;  // compute beta
float GyroMeasDrift = PI * (2.0f / 180.0f);      // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift;  // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
float deltat = 0.0f;                              // integration interval for both filter schemes
uint32_t lastUpdate = 0, firstUpdate = 0;         // used to calculate integration interval
uint32_t Now = 0;                                 // used to calculate integration interval

void setup()
{
  Wire.begin();
  Serial.begin(9600);

  // Set up the interrupt pin, its set as active high, push-pull
  pinMode(intPin, INPUT);
  digitalWrite(intPin, LOW);
  pinMode(blinkPin, OUTPUT);
  digitalWrite(blinkPin, HIGH);

  // Read the WHO_AM_I register, this is a good test of communication
  uint8_t c = mpu.readByte(MPU6050_ADDRESS, WHO_AM_I_MPU6050);  // Read WHO_AM_I register for MPU-6050
  Serial.print("I AM ");
  Serial.print(c, HEX);
  Serial.print(" I Should Be ");
  Serial.println(0x68, HEX);

  if (c == 0x68) // WHO_AM_I should always be 0x68
  {
    Serial.println("MPU6050 is online...");

    mpu.MPU6050SelfTest(SelfTest); // Start by performing self test and reporting values
    //    Serial.print("x-axis self test: acceleration trim within : "); Serial.print(SelfTest[0],1); Serial.println("% of factory value");
    //    Serial.print("y-axis self test: acceleration trim within : "); Serial.print(SelfTest[1],1); Serial.println("% of factory value");
    //    Serial.print("z-axis self test: acceleration trim within : "); Serial.print(SelfTest[2],1); Serial.println("% of factory value");
    //    Serial.print("x-axis self test: gyration trim within : "); Serial.print(SelfTest[3],1); Serial.println("% of factory value");
    //    Serial.print("y-axis self test: gyration trim within : "); Serial.print(SelfTest[4],1); Serial.println("% of factory value");
    //    Serial.print("z-axis self test: gyration trim within : "); Serial.print(SelfTest[5],1); Serial.println("% of factory value");

    if (SelfTest[0] < 1.0f && SelfTest[1] < 1.0f && SelfTest[2] < 1.0f && SelfTest[3] < 1.0f && SelfTest[4] < 1.0f && SelfTest[5] < 1.0f) {
      Serial.println("Pass Selftest!");

      mpu.calibrateMPU6050(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
      Serial.println("MPU6050 bias");
      Serial.println(" x\t  y\t  z  ");
      Serial.print((int)(1000 * accelBias[0])); Serial.print('\t');
      Serial.print((int)(1000 * accelBias[1])); Serial.print('\t');
      Serial.print((int)(1000 * accelBias[2]));
      Serial.println(" mg");

      Serial.print(gyroBias[0], 1); Serial.print('\t');
      Serial.print(gyroBias[1], 1); Serial.print('\t');
      Serial.print(gyroBias[2], 1);
      Serial.println(" o/s");


      mpu.initMPU6050(); Serial.println("MPU6050 initialized for active data mode...."); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
    }
    else
    {
      Serial.print("Could not connect to MPU6050: 0x");
      Serial.println(c, HEX);
      while (1) ; // Loop forever if communication doesn't happen
    }
  }
}

void loop()
{
  // If data ready bit set, all data registers have new data
  if (mpu.readByte(MPU6050_ADDRESS, INT_STATUS) & 0x01) { // check if data ready interrupt
    mpu.readAccelData(accelCount);  // Read the x/y/z adc values
    aRes = mpu.getAres();

    // Now we'll calculate the accleration value into actual g's
    ax = (float)accelCount[0] * aRes; // get actual g value, this depends on scale being set
    ay = (float)accelCount[1] * aRes;
    az = (float)accelCount[2] * aRes;

    mpu.readGyroData(gyroCount);  // Read the x/y/z adc values
    gRes = mpu.getGres();

    // Calculate the gyro value into actual degrees per second
    gyrox = (float)gyroCount[0] * gRes; // get actual gyro value, this depends on scale being set
    gyroy = (float)gyroCount[1] * gRes;
    gyroz = (float)gyroCount[2] * gRes;

    tempCount = mpu.readTempData();  // Read the x/y/z adc values
    temperature = ((float) tempCount) / 340. + 36.53; // Temperature in degrees Centigrade
  }

  Now = micros();
  deltat = ((Now - lastUpdate) / 1000000.0f); // set integration time by time elapsed since last filter update
  lastUpdate = Now;
  //    if(lastUpdate - firstUpdate > 10000000uL) {
  //      beta = 0.041; // decrease filter gain after stabilized
  //      zeta = 0.015; // increase gyro bias drift gain after stabilized
  //    }
  // Pass gyro rate as rad/s
  MadgwickQuaternionUpdate(ax, ay, az, gyrox * PI / 180.0f, gyroy * PI / 180.0f, gyroz * PI / 180.0f);

  // Serial print and/or display at 0.5 s rate independent of data rates
  delt_t = millis() - count;
  if (delt_t > 500) { // update LCD once per half-second independent of read rate
    digitalWrite(blinkPin, blinkOn);
    /*
        Serial.print("ax = "); Serial.print((int)1000*ax);
        Serial.print(" ay = "); Serial.print((int)1000*ay);
        Serial.print(" az = "); Serial.print((int)1000*az); Serial.println(" mg");

        Serial.print("gyrox = "); Serial.print( gyrox, 1);
        Serial.print(" gyroy = "); Serial.print( gyroy, 1);
        Serial.print(" gyroz = "); Serial.print( gyroz, 1); Serial.println(" deg/s");

        Serial.print("q0 = "); Serial.print(q[0]);
        Serial.print(" qx = "); Serial.print(q[1]);
        Serial.print(" qy = "); Serial.print(q[2]);
        Serial.print(" qz = "); Serial.println(q[3]);
    */
    // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
    // In this coordinate system, the positive z-axis is down toward Earth.
    // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
    // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
    // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
    // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
    // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
    // applied in the correct order which for this configuration is yaw, pitch, and then roll.
    // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
    yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
    pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
    roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);

    pitch *= 180.0f / PI;
    yaw   *= 180.0f / PI;
    roll  *= 180.0f / PI;

    Serial.print("Yaw, Pitch, Roll: ");
    Serial.print(yaw, 2);
    Serial.print(", ");
    Serial.print(pitch, 2);
    Serial.print(", ");
    Serial.println(roll, 2);

    //    Serial.print("average rate = "); Serial.print(1.0f/deltat, 2); Serial.println(" Hz");

    Serial.println(" x\t  y\t  z  ");

    Serial.print((int)(1000 * ax)); Serial.print('\t');
    Serial.print((int)(1000 * ay)); Serial.print('\t');
    Serial.print((int)(1000 * az));
    Serial.println(" mg");

    Serial.print((int)(gyrox)); Serial.print('\t');
    Serial.print((int)(gyroy)); Serial.print('\t');
    Serial.print((int)(gyroz));
    Serial.println(" o/s");

    Serial.print((int)(yaw)); Serial.print('\t');
    Serial.print((int)(pitch)); Serial.print('\t');
    Serial.print((int)(roll));
    Serial.println(" ypr");

    Serial.print("rt: "); Serial.print(1.0f / deltat, 2); Serial.println(" Hz");

    blinkOn = ~blinkOn;
    count = millis();
  }
}

// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
// (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
// which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative
// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
        void MadgwickQuaternionUpdate(float ax, float ay, float az, float gyrox, float gyroy, float gyroz)
        {
            float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];         // short name local variable for readability
            float norm;                                               // vector norm
            float f1, f2, f3;                                         // objetive funcyion elements
            float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements
            float qDot1, qDot2, qDot3, qDot4;
            float hatDot1, hatDot2, hatDot3, hatDot4;
            float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz;        // gyro bias error

            // Auxiliary variables to avoid repeated arithmetic
            float _halfq1 = 0.5f * q1;
            float _halfq2 = 0.5f * q2;
            float _halfq3 = 0.5f * q3;
            float _halfq4 = 0.5f * q4;
            float _2q1 = 2.0f * q1;
            float _2q2 = 2.0f * q2;
            float _2q3 = 2.0f * q3;
            float _2q4 = 2.0f * q4;
            float _2q1q3 = 2.0f * q1 * q3;
            float _2q3q4 = 2.0f * q3 * q4;

            // Normalise accelerometer measurement
            norm = sqrt(ax * ax + ay * ay + az * az);
            if (norm == 0.0f) return; // handle NaN
            norm = 1.0f/norm;
            ax *= norm;
            ay *= norm;
            az *= norm;
            
            // Compute the objective function and Jacobian
            f1 = _2q2 * q4 - _2q1 * q3 - ax;
            f2 = _2q1 * q2 + _2q3 * q4 - ay;
            f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
            J_11or24 = _2q3;
            J_12or23 = _2q4;
            J_13or22 = _2q1;
            J_14or21 = _2q2;
            J_32 = 2.0f * J_14or21;
            J_33 = 2.0f * J_11or24;
          
            // Compute the gradient (matrix multiplication)
            hatDot1 = J_14or21 * f2 - J_11or24 * f1;
            hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
            hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1;
            hatDot4 = J_14or21 * f1 + J_11or24 * f2;
            
            // Normalize the gradient
            norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4);
            hatDot1 /= norm;
            hatDot2 /= norm;
            hatDot3 /= norm;
            hatDot4 /= norm;
            
            // Compute estimated gyroscope biases
            gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
            gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
            gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
            
            // Compute and remove gyroscope biases
            gbiasx += gerrx * deltat * zeta;
            gbiasy += gerry * deltat * zeta;
            gbiasz += gerrz * deltat * zeta;
            gyrox -= gbiasx;
            gyroy -= gbiasy;
            gyroz -= gbiasz;
            
            // Compute the quaternion derivative
            qDot1 = -_halfq2 * gyrox - _halfq3 * gyroy - _halfq4 * gyroz;
            qDot2 =  _halfq1 * gyrox + _halfq3 * gyroz - _halfq4 * gyroy;
            qDot3 =  _halfq1 * gyroy - _halfq2 * gyroz + _halfq4 * gyrox;
            qDot4 =  _halfq1 * gyroz + _halfq2 * gyroy - _halfq3 * gyrox;

            // Compute then integrate estimated quaternion derivative
            q1 += (qDot1 -(beta * hatDot1)) * deltat;
            q2 += (qDot2 -(beta * hatDot2)) * deltat;
            q3 += (qDot3 -(beta * hatDot3)) * deltat;
            q4 += (qDot4 -(beta * hatDot4)) * deltat;

            // Normalize the quaternion
            norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion
            norm = 1.0f/norm;
            q[0] = q1 * norm;
            q[1] = q2 * norm;
            q[2] = q3 * norm;
            q[3] = q4 * norm;
        }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/537443
推荐阅读
相关标签
  

闽ICP备14008679号