赞
踩
SparkStreaming读取kafka消息队列数据时,如果SparkStreaming突然由于一些非代码原因挂掉,重启Spark集群如何能确保SparkStreaming能不丢失kafka队列内的数据。主要利用了kafka集群的offset值。offset记录了kafka每个分区数据读取到了哪里,类似于游标。有三种解决方案操作offset:
利用spark Checkpointing 机制保存数据至hdfs,最大的缺点是不代码改动后之前的checkpoint将失效
详情参考http://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing
详情参考http://spark.apache.org/docs/latest/streaming-kafka-0-10-integration.html#kafka-itself
操作前记录offset值,操作后更新offset值。本文介绍如何用zookeeper存储offset,读取更新offset值
在 SparkStreaming 中消费 Kafka 数据的时候,有两种方式分别是 1)基于 Receiver-based 的 createStream 方法和 2)Direct Approach (No Receivers) 方式的 createDirectStream 方法,详细的可以参考 Spark Streaming + Kafka Integration Guide ,但是第二种使用方式中 kafka 的 offset 是保存在 checkpoint 中的,如果程序重启的话,会丢失一部分数据,可以参考 Spark & Kafka - Achieving zero data-loss 。
本文主要讲在使用第二种消费方式(Direct Approach)的情况下,如何将 kafka 中的 offset 保存到 zookeeper 中,以及如何从 zookeeper 中读取已存在的 offset。
大致思想就是,在初始化 kafka stream 的时候,查看 zookeeper 中是否保存有 offset,有就从该 offset 进行读取,没有就从最新/旧进行读取。在消费 kafka 数据的同时,将每个 partition 的 offset 保存到 zookeeper 中进行备份,具体实现参考下面代码
val topic : String = "topic_name" //消费的 topic 名字 val topics : Set[String] = Set(topic) //创建 stream 时使用的 topic 名字集合 val topicDirs = new ZKGroupTopicDirs("test_spark_streaming_group", topic) //创建一个 ZKGroupTopicDirs 对象,对保存 val zkTopicPath = s"${topicDirs.consumerOffsetDir}" 获取 zookeeper 中的路径,这里会变成 /consumers/test_spark_streaming_group/offsets/topic_name val zkClient = new ZkClient("10.4.232.77:2181") //zookeeper 的host 和 ip,创建一个 client val children = zkClient.countChildren(s"${topicDirs.consumerOffsetDir}") //查询该路径下是否字节点(默认有字节点为我们自己保存不同 partition 时生成的) var kafkaStream : InputDStream[(String, String)] = null var fromOffsets: Map[TopicAndPartition, Long] = Map() //如果 zookeeper 中有保存 offset,我们会利用这个 offset 作为 kafkaStream 的起始位置 if (children > 0) { //如果保存过 offset,这里更好的做法,还应该和 kafka 上最小的 offset 做对比,不然会报 OutOfRange 的错误 for (i <- 0 untilchildren) { val partitionOffset = zkClient.readData[String](s"${topicDirs.consumerOffsetDir}/${i}") val tp = TopicAndPartition(topic, i) fromOffsets += (tp -> partitionOffset.toLong) //将不同 partition 对应的 offset 增加到 fromOffsets 中 logInfo("@@@@@@ topic[" + topic + "] partition[" + i + "] offset[" + partitionOffset + "] @@@@@@") } val messageHandler = (mmd : MessageAndMetadata[String, String]) => (mmd.topic, mmd.message()) //这个会将 kafka 的消息进行 transform,最终 kafak 的数据都会变成 (topic_name, message) 这样的 tuple kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder, (String, String)](ssc, kafkaParam, fromOffsets, messageHandler) } else { kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParam, topics) //如果未保存,根据 kafkaParam 的配置使用最新或者最旧的 offset } var offsetRanges = Array[OffsetRange]() kafkaStream.transform{ rdd => offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges //得到该 rdd 对应 kafka 的消息的 offset rdd }.map(msg => Utils.msgDecode(msg)).foreachRDD { rdd => for (o <- offsetRanges) { val zkPath = s"${topicDirs.consumerOffsetDir}/${o.partition}" ZkUtils.updatePersistentPath(zkClient, zkPath, o.fromOffset.toString) //将该 partition 的 offset 保存到 zookeeper logInfo(s"@@@@@@ topic ${o.topic} partition ${o.partition} fromoffset ${o.fromOffset} untiloffset ${o.untilOffset} #######") } rdd.foreachPartition( message => { while(message.hasNext) { logInfo(s"@^_^@ [" + message.next() + "] @^_^@") } } ) }
使用上面的代码,我们可以做到 Spark Streaming 程序从 Kafka 中读取数据是不丢失
我们讲了如何在将 offset 保存在 zk 中,以及进行重用,但是程序中有个小问题“如果程序停了很长很长一段后再启动,zk 中保存的 offset 已经过期了,那会怎样呢?”本文将解决这个问题
如果 kafka 上的 offset 已经过期,那么就会报 OffsetOutOfRange 的异常,因为之前保存在 zk 的 offset 已经 topic 中找不到了。所以我们需要在 从 zk 找到 offset 的这种情况下增加一个判断条件,如果 zk 中保存的 offset 小于当前 kafka topic 中最小的 offset,则设置为 kafka topic 中最小的 offset。假设我们上次保存在 zk 中的 offset 值为 123(某一个 partition),然后程序停了一周,现在 kafka topic 的最小 offset 变成了 200,那么用前文的代码,就会得到 OffsetOutOfRange 的异常,因为 123 对应的数据已经找不到了。下面我们给出,如何获取 <topic, parition> 的最小 offset,这样我们就可以进行对比了
val partitionOffset = zkClient.readData[String](s"${topicDirs.consumerOffsetDir}/${i}")
val tp = TopicAndPartition(topic, i)
val requestMin = OffsetRequest(Map(tp -> PartitionOffsetRequestInfo(OffsetRequest.EarliestTime, 1)))
val consumerMin = new SimpleConsumer("broker_host", 9092, 10000, 10000, "getMinOffset") //注意这里的 broker_host,因为这里会导致查询不到,解决方法在下面
val curOffsets = consumerMin.getOffsetsBefore(requestMin).partitionErrorAndOffsets(tp).offsets
var nextOffset = partitionOffset.toLong
if (curOffsets.length > 0 && nextOffset < curOffsets.head) { // 通过比较从 kafka 上该 partition 的最小 offset 和 zk 上保存的 offset,进行选择
nextOffset = curOffsets.head
}
fromOffsets += (tp -> nextOffset) //设置正确的 offset,这里将 nextOffset 设置为 0(0 只是一个特殊值),可以观察到 offset 过期的想想
但是上面的代码有一定的问题,因为我们从 kafka 上获取 offset 的时候,需要寻找对应的 leader,从 leader 来获取 offset,而不是 broker,不然可能得到的 curOffsets 会是空的(表示获取不到)。下面的代码就是获取不同 partition 的 leader 相关代码
val topic_name = "topic_name" //topic_name 表示我们希望获取的 topic 名字
val topic2 = List(topic_name)
val req = new TopicMetadataRequest(topic2, 0)
val getLeaderConsumer = new SimpleConsumer("broker_host", 9092, 10000, 10000, "OffsetLookup") // 第一个参数是 kafka broker 的host,第二个是 port
val res = getLeaderConsumer.send(req)
val topicMetaOption = res.topicsMetadata.headOption
val partitions = topicMetaOption match {
case Some(tm) =>
tm.partitionsMetadata.map(pm => (pm.partitionId, pm.leader.get.host)).toMap[Int, String] // 将结果转化为 partition -> leader 的映射关系
case None =>
Map[Int, String]()
}
上面的代码能够得到所有 partition 的 leader 地址,然后将 leader 地址替换掉上面第一份代码中的 broker_list 即可。
到此,在 spark streaming 中将 kafka 的 offset 保存到 zk,并重用的大部分情况都覆盖到了
参考于:http://www.aboutyun.com/thread-20244-1-1.html
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。