当前位置:   article > 正文

梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python)_伴随梯度迭代

伴随梯度迭代

梯度迭代树

算法简介:

        梯度提升树是一种决策树的集成算法。它通过反复迭代训练决策树来最小化损失函数。决策树类似,梯度提升树具有可处理类别特征、易扩展到多分类问题、不需特征缩放等性质。Spark.ml通过使用现有decision tree工具来实现。

       梯度提升树依次迭代训练一系列的决策树。在一次迭代中,算法使用现有的集成来对每个训练实例的类别进行预测,然后将预测结果与真实的标签值进行比较。通过重新标记,来赋予预测结果不好的实例更高的权重。所以,在下次迭代中,决策树会对先前的错误进行修正。

       对实例标签进行重新标记的机制由损失函数来指定。每次迭代过程中,梯度迭代树在训练数据上进一步减少损失函数的值。spark.ml为分类问题提供一种损失函数(Log Loss),为回归问题提供两种损失函数(平方误差与绝对误差)。

       Spark.ml支持二分类以及回归的随机森林算法,适用于连续特征以及类别特征。

*注意梯度提升树目前不支持多分类问题。

参数:

checkpointInterval:

类型:整数型。

含义:设置检查点间隔(>=1),或不设置检查点(-1)。

featuresCol:

类型:字符串型。

含义:特征列名。

impurity:

类型:字符串型。

含义:计算信息增益的准则(不区分大小写)。

labelCol:

类型:字符串型。

含义:标签列名。

lossType:

类型:字符串型。

含义:损失函数类型。

maxBins:

类型:整数型。

含义:连续特征离散化的最大数量,以及选择每个节点分裂特征的方式。

maxDepth:

类型:整数型。

含义:树的最大深度(>=0)。

maxIter:

类型:整数型。

含义:迭代次数(>=0)。

minInfoGain:

类型:双精度型。

含义:分裂节点时所需最小信息增益。

minInstancesPerNode:

类型:整数型。

含义:分裂后自节点最少包含的实例数量。

predictionCol:

类型:字符串型。

含义:预测结果列名。

rawPredictionCol:

类型:字符串型。

含义:原始预测。

seed:

类型:长整型。

含义:随机种子。

subsamplingRate:

类型:双精度型。

含义:学习一棵决策树使用的训练数据比例,范围[0,1]。

stepSize:

类型:双精度型。

含义:每次迭代优化步长。

示例:

       下面的例子导入LibSVM格式数据,并将之划分为训练数据和测试数据。使用第一部分数据进行训练,剩下数据来测试。训练之前我们使用了两种数据预处理方法来对特征进行转换,并且添加了元数据到DataFrame。

Scala:

import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.{GBTClassificationModel, GBTClassifier}
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer}

// Load and parse the data file, converting it to a DataFrame.
val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")

// Index labels, adding metadata to the label column.
// Fit on whole dataset to include all labels in index.
val labelIndexer = new StringIndexer()
  .setInputCol("label")
  .setOutputCol("indexedLabel")
  .fit(data)
// Automatically identify categorical features, and index them.
// Set maxCategories so features with > 4 distinct values are treated as continuous.
val featureIndexer = new VectorIndexer()
  .setInputCol("features")
  .setOutputCol("indexedFeatures")
  .setMaxCategories(4)
  .fit(data)

// Split the data into training and test sets (30% held out for testing).
val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3))

// Train a GBT model.
val gbt = new GBTClassifier()
  .setLabelCol("indexedLabel")
  .setFeaturesCol("indexedFeatures")
  .setMaxIter(10)

// Convert indexed labels back to original labels.
val labelConverter = new IndexToString()
  .setInputCol("prediction")
  .setOutputCol("predictedLabel")
  .setLabels(labelIndexer.labels)

// Chain indexers and GBT in a Pipeline.
val pipeline = new Pipeline()
  .setStages(Array(labelIndexer, featureIndexer, gbt, labelConverter))

// Train model. This also runs the indexers.
val model = pipeline.fit(trainingData)

// Make predictions.
val predictions = model.transform(testData)

// Select example rows to display.
predictions.select("predictedLabel", "label", "features").show(5)

// Select (prediction, true label) and compute test error.
val evaluator = new MulticlassClassificationEvaluator()
  .setLabelCol("indexedLabel")
  .setPredictionCol("prediction")
  .setMetricName("accuracy")
val accuracy = evaluator.evaluate(predictions)
println("Test Error = " + (1.0 - accuracy))

val gbtModel = model.stages(2).asInstanceOf[GBTClassificationModel]
println("Learned classification GBT model:\n" + gbtModel.toDebugString)

Java:

  1. import org.apache.spark.ml.Pipeline;
  2. import org.apache.spark.ml.PipelineModel;
  3. import org.apache.spark.ml.PipelineStage;
  4. import org.apache.spark.ml.classification.GBTClassificationModel;
  5. import org.apache.spark.ml.classification.GBTClassifier;
  6. import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator;
  7. import org.apache.spark.ml.feature.*;
  8. import org.apache.spark.sql.Dataset;
  9. import org.apache.spark.sql.Row;
  10. import org.apache.spark.sql.SparkSession;
  11. // Load and parse the data file, converting it to a DataFrame.
  12. Dataset<Row> data = spark
  13. .read()
  14. .format("libsvm")
  15. .load("data/mllib/sample_libsvm_data.txt");
  16. // Index labels, adding metadata to the label column.
  17. // Fit on whole dataset to include all labels in index.
  18. StringIndexerModel labelIndexer = new StringIndexer()
  19. .setInputCol("label")
  20. .setOutputCol("indexedLabel")
  21. .fit(data);
  22. // Automatically identify categorical features, and index them.
  23. // Set maxCategories so features with > 4 distinct values are treated as continuous.
  24. VectorIndexerModel featureIndexer = new VectorIndexer()
  25. .setInputCol("features")
  26. .setOutputCol("indexedFeatures")
  27. .setMaxCategories(4)
  28. .fit(data);
  29. // Split the data into training and test sets (30% held out for testing)
  30. Dataset<Row>[] splits = data.randomSplit(new double[] {0.7, 0.3});
  31. Dataset<Row> trainingData = splits[0];
  32. Dataset<Row> testData = splits[1];
  33. // Train a GBT model.
  34. GBTClassifier gbt = new GBTClassifier()
  35. .setLabelCol("indexedLabel")
  36. .setFeaturesCol("indexedFeatures")
  37. .setMaxIter(10);
  38. // Convert indexed labels back to original labels.
  39. IndexToString labelConverter = new IndexToString()
  40. .setInputCol("prediction")
  41. .setOutputCol("predictedLabel")
  42. .setLabels(labelIndexer.labels());
  43. // Chain indexers and GBT in a Pipeline.
  44. Pipeline pipeline = new Pipeline()
  45. .setStages(new PipelineStage[] {labelIndexer, featureIndexer, gbt, labelConverter});
  46. // Train model. This also runs the indexers.
  47. PipelineModel model = pipeline.fit(trainingData);
  48. // Make predictions.
  49. Dataset<Row> predictions = model.transform(testData);
  50. // Select example rows to display.
  51. predictions.select("predictedLabel", "label", "features").show(5);
  52. // Select (prediction, true label) and compute test error.
  53. MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator()
  54. .setLabelCol("indexedLabel")
  55. .setPredictionCol("prediction")
  56. .setMetricName("accuracy");
  57. double accuracy = evaluator.evaluate(predictions);
  58. System.out.println("Test Error = " + (1.0 - accuracy));
  59. GBTClassificationModel gbtModel = (GBTClassificationModel)(model.stages()[2]);
  60. System.out.println("Learned classification GBT model:\n" + gbtModel.toDebugString());

Python:

  1. from pyspark.ml import Pipeline
  2. from pyspark.ml.classification import GBTClassifier
  3. from pyspark.ml.feature import StringIndexer, VectorIndexer
  4. from pyspark.ml.evaluation import MulticlassClassificationEvaluator
  5. # Load and parse the data file, converting it to a DataFrame.
  6. data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
  7. # Index labels, adding metadata to the label column.
  8. # Fit on whole dataset to include all labels in index.
  9. labelIndexer = StringIndexer(inputCol="label", outputCol="indexedLabel").fit(data)
  10. # Automatically identify categorical features, and index them.
  11. # Set maxCategories so features with > 4 distinct values are treated as continuous.
  12. featureIndexer =\
  13. VectorIndexer(inputCol="features", outputCol="indexedFeatures", maxCategories=4).fit(data)
  14. # Split the data into training and test sets (30% held out for testing)
  15. (trainingData, testData) = data.randomSplit([0.7, 0.3])
  16. # Train a GBT model.
  17. gbt = GBTClassifier(labelCol="indexedLabel", featuresCol="indexedFeatures", maxIter=10)
  18. # Chain indexers and GBT in a Pipeline
  19. pipeline = Pipeline(stages=[labelIndexer, featureIndexer, gbt])
  20. # Train model. This also runs the indexers.
  21. model = pipeline.fit(trainingData)
  22. # Make predictions.
  23. predictions = model.transform(testData)
  24. # Select example rows to display.
  25. predictions.select("prediction", "indexedLabel", "features").show(5)
  26. # Select (prediction, true label) and compute test error
  27. evaluator = MulticlassClassificationEvaluator(
  28. labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy")
  29. accuracy = evaluator.evaluate(predictions)
  30. print("Test Error = %g" % (1.0 - accuracy))
  31. gbtModel = model.stages[2]
  32. print(gbtModel) # summary only


声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/547194
推荐阅读
相关标签
  

闽ICP备14008679号