当前位置:   article > 正文

CVPR2017论文摘要汇总_relative error reduction

relative error reduction

1. Exclusivity-Consistency Regularized Multi-view Subspace Clustering

Abstract: Multi-view subspace clustering aims to partition a set of multi-source data into their underlying groups. To boost the performance of multi-view clustering, numerous subspace learning algorithms have been developed in recent years, but with rare exploitation of the representation complementarity between different views as well as the indicator consistency among the representations, let alone considering them simultaneously. In this paper, we propose a novel multi-view subspace clustering model that attempts to harness the complementary information between different representations by introducing a novel position-aware exclusivity term. Meanwhile, a consistency term is employed to make these complementary representations to further have a common indicator. We formulate the above concerns into a unified optimization framework. Experimental results on several benchmark datasets are conducted to reveal the effectiveness of our algorithm over other state-of-the-arts.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099491&isnumber=8099483

2. Borrowing Treasures from the Wealthy: Deep Transfer Learning through Selective Joint Fine-Tuning

Abstract: Deep neural networks require a large amount of labeled training data during supervised learning. However, collecting and labeling so much data might be infeasible in many cases. In this paper, we introduce a deep transfer learning scheme, called selective joint fine-tuning, for improving the performance of deep learning tasks with insufficient training data. In this scheme, a target learning task with insufficient training data is carried out simultaneously with another source learning task with abundant training data. However, the source learning task does not use all existing training data. Our core idea is to identify and use a subset of training images from the original source learning task whose low-level characteristics are similar to those from the target learning task, and jointly fine-tune shared convolutional layers for both tasks. Specifically, we compute descriptors from linear or nonlinear filter bank responses on training images from both tasks, and use such descriptors to search for a desired subset of training samples for the source learning task. Experiments demonstrate that our deep transfer learning scheme achieves state-of-the-art performance on multiple visual classification tasks with insufficient training data for deep learning. Such tasks include Caltech 256, MIT Indoor 67, and fine-grained classification problems (Oxford Flowers 102 and Stanford Dogs 120). In comparison to fine-tuning without a source domain, the proposed method can improve the classification accuracy by 2% - 10% using a single model. Codes and models are available at https://github.com/ZYYSzj/Selective-Joint-Fine-tuning.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099492&isnumber=8099483

3. The More You Know: Using Knowledge Graphs for Image Classification

Abstract: One characteristic that sets humans apart from modern learning-based computer vision algorithms is the ability to acquire knowledge about the world and use that knowledge to reason about the visual world. Humans can learn about the characteristics of objects and the relationships that occur between them to learn a large variety of visual concepts, often with few examples. This paper investigates the use of structured prior knowledge in the form of knowledge graphs and shows that using this knowledge improves performance on image classification. We build on recent work on end-to-end learning on graphs, introducing the Graph Search Neural Network as a way of efficiently incorporating large knowledge graphs into a vision classification pipeline. We show in a number of experiments that our method outperforms standard neural network baselines for multi-label classification.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099493&isnumber=8099483

4. Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs

Abstract: A number of problems can be formulated as prediction on graph-structured data. In this work, we generalize the convolution operator from regular grids to arbitrary graphs while avoiding the spectral domain, which allows us to handle graphs of varying size and connectivity. To move beyond a simple diffusion, filter weights are conditioned on the specific edge labels in the neighborhood of a vertex. Together with the proper choice of graph coarsening, we explore constructing deep neural networks for graph classification. In particular, we demonstrate the generality of our formulation in point cloud classification, where we set the new state of the art, and on a graph classification dataset, where we outperform other deep learning approaches.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099494&isnumber=8099483

5. Convolutional Neural Network Architecture for Geometric Matching

Abstract: We address the problem of determining correspondences between two images in agreement with a geometric model such as an affine or thin-plate spline transformation, and estimating its parameters. The contributions of this work are three-fold. First, we propose a convolutional neural network architecture for geometric matching. The architecture is based on three main components that mimic the standard steps of feature extraction, matching and simultaneous inlier detection and model parameter estimation, while being trainable end-to-end. Second, we demonstrate that the network parameters can be trained from synthetically generated imagery without the need for manual annotation and that our matching layer significantly increases generalization capabilities to never seen before images. Finally, we show that the same model can perform both instance-level and category-level matching giving state-of-the-art results on the challenging Proposal Flow dataset.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099495&isnumber=8099483

6. Deep Affordance-Grounded Sensorimotor Object Recognition

Abstract: It is well-established by cognitive neuroscience that human perception of objects constitutes a complex process, where object appearance information is combined with evidence about the so-called object affordances, namely the types of actions that humans typically perform when interacting with them. This fact has recently motivated the sensorimotor approach to the challenging task of automatic object recognition, where both information sources are fused to improve robustness. In this work, the aforementioned paradigm is adopted, surpassing current limitations of sensorimotor object recognition research. Specifically, the deep learning paradigm is introduced to the problem for the first time, developing a number of novel neuro-biologically and neuro-physiologically inspired architectures that utilize state-of-the-art neural networks for fusing the available information sources in multiple ways. The proposed methods are evaluated using a large RGB-D corpus, which is specifically collected for the task of sensorimotor object recognition and is made publicly available. Experimental results demonstrate the utility of affordance information to object recognition, achieving an up to 29% relative error reduction by its inclusion.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099496&isnumber=8099483

7. Discovering Causal Signals in Images

Abstract: This paper establishes the existence of observable footprints that reveal the causal dispositions of the object categories appearing in collections of images. We achieve this goal in two steps. First, we take a learning approach to observational causal discovery, and build a classifier that achieves state-of-the-art performance on finding the causal direction between pairs of random variables, given samples from their joint distribution. Second, we use our causal direction classifier to effectively distinguish between features of objects and features of their contexts in collections of static images. Our experiments demonstrate the existence of a relation between the direction of causality and the difference between objects and their contexts, and by the same token, the existence of observable signals that reveal the causal dispositions of objects.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099497&isnumber=8099483

8. On Compressing Deep Models by Low Rank and Sparse Decomposition

Abstract: Deep compression refers to removing the redundancy of parameters and feature maps for deep learning models. Low-rank approximation and pruning for sparse structures play a vital role in many compression works. However, weight filters tend to be both low-rank and sparse. Neglecting either part of these structure information in previous methods results in iteratively retraining, compromising accuracy, and low compression rates. Here we propose a unified framework integrating the low-rank and sparse decomposition of weight matrices with the feature map reconstructions. Our model includes methods like pruning connections as special cases, and is optimized by a fast SVD-free algorithm. It has been theoretically proven that, with a small sample, due to its generalizability, our model can well reconstruct the feature maps on both training and test data, which results in less compromising accuracy prior to the subsequent retraining. With such a warm start to retrain, the compression method always possesses several merits: (a) higher compression rates, (b) little loss of accuracy, and (c) fewer rounds to compress deep models. The experimental results on several popular models such as AlexNet, VGG-16, and GoogLeNet show that our model can significantly reduce the parameters for both convolutional and fully-connected layers. As a result, our model reduces the size of VGG-16 by 15×, better than other recent compression methods that use a single strategy.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099498&isnumber=8099483

9. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Abstract: Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, however, renders data unnecessarily voluminous and causes issues. In this paper, we design a novel type of neural network that directly consumes point clouds, which well respects the permutation invariance of points in the input. Our network, named PointNet, provides a unified architecture for applications ranging from object classification, part segmentation, to scene semantic parsing. Though simple, PointNet is highly efficient and effective. Empirically, it shows strong performance on par or even better than state of the art. Theoretically, we provide analysis towards understanding of what the network has learnt and why the network is robust with respect to input perturbation and corruption.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099499&isnumber=8099483

10. Universal Adversarial Perturbations

Abstract: Given a state-of-the-art deep neural network classifier, we show the existence of a universal (image-agnostic) and very small perturbation vector that causes natural images to be misclassified with high probability. We propose a systematic algorithm for computing universal perturbations, and show that state-of-the-art deep neural networks are highly vulnerable to such perturbations, albeit being quasi-imperceptible to the human eye. We further empirically analyze these universal perturbations and show, in particular, that they generalize very well across neural networks. The surprising existence of universal perturbations reveals important geometric correlations among the high-dimensional decision boundary of classifiers. It further outlines potential security breaches with the existence of single directions in the input space that adversaries can possibly exploit to break a classifier on most natural images.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099500&isnumber=8099483

11. Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks

Abstract: Collecting well-annotated image datasets to train modern machine learning algorithms is prohibitively expensive for many tasks. One appealing alternative is rendering synthetic data where ground-truth annotations are generated automatically. Unfortunately, models trained purely on rendered images fail to generalize to real images. To address this shortcoming, prior work introduced unsupervised domain adaptation algorithms that have tried to either map representations between the two domains, or learn to extract features that are domain-invariant. In this work, we approach the problem in a new light by learning in an unsupervised manner a transformation in the pixel space from one domain to the other. Our generative adversarial network (GAN)-based method adapts source-domain images to appear as if drawn from the target domain. Our approach not only produces plausible samples, but also outperforms the state-of-the-art on a number of unsupervised domain adaptation scenarios by large margins. Finally, we demonstrate that the adaptation process generalizes to object classes unseen during training.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099501&isnumber=8099483

12. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Abstract: Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer texture details when we super-resolve at large upscaling factors? The behavior of optimization-based super-resolution methods is principally driven by the choice of the objective function. Recent work has largely focused on minimizing the mean squared reconstruction error. The resulting estimates have high peak signal-to-noise ratios, but they are often lacking high-frequency details and are perceptually unsatisfying in the sense that they fail to match the fidelity expected at the higher resolution. In this paper, we present SRGAN, a generative adversarial network (GAN) for image super-resolution (SR). To our knowledge, it is the first framework capable of inferring photo-realistic natural images for 4x upscaling factors. To achieve this, we propose a perceptual loss function which consists of an adversarial loss and a content loss. The adversarial loss pushes our solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images. In addition, we use a content loss motivated by perceptual similarity instead of similarity in pixel space. Our deep residual network is able to recover photo-realistic textures from heavily downsampled images on public benchmarks. An extensive mean-opinion-score (MOS) test shows hugely significant gains in perceptual quality using SRGAN. The MOS scores obtained with SRGAN are closer to those of the original high-resolution images than to those obtained with any state-of-the-art method.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099502&isnumber=8099483

13. Global Hypothesis Generation for 6D Object Pose Estimation

Abstract: This paper addresses the task of estimating the 6D-pose of a known 3D object from a single RGB-D image. Most modern approaches solve this task in three steps: i) compute local features, ii) generate a pool of pose-hypotheses, iii) select and refine a pose from the pool. This work focuses on the second step. While all existing approaches generate the hypotheses pool via local reasoning, e.g. RANSAC or Hough-Voting, we are the first to show that global reasoning is beneficial at this stage. In particular, we formulate a novel fully-connected Conditional Random Field (CRF) that outputs a very small number of pose-hypotheses. Despite the potential functions of the CRF being non-Gaussian, we give a new, efficient two-step optimization procedure, with some guarantees for optimality. We utilize our global hypotheses generation procedure to produce results that exceed state-of-the-art for the challenging “Occluded Object Dataset”.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099503&isnumber=8099483

14. A Practical Method for Fully Automatic Intrinsic Camera Calibration Using Directionally Encoded Light

Abstract: Calibrating the intrinsic properties of a camera is one of the fundamental tasks required for a variety of computer vision and image processing tasks. The precise measurement of focal length, location of the principal point as well as distortion parameters of the lens is crucial, for example, for 3D reconstruction [27]. Although a variety of methods exist to achieve this goal, they are often cumbersome to carry out, require substantial manual interaction, expert knowledge, and a significant operating volume. We propose a novel calibration method based on the usage of directionally encoded light rays for estimating the intrinsic parameters. It enables a fully automatic calibration with a small device mounted close to the front lens element and still enables an accuracy comparable to standard methods even when the lens is focused up to infinity. Our method overcomes the mentioned limitations since it guarantees an accurate calibration without any human intervention while requiring only a limited amount of space. Besides that, the approach also allows to estimate the distance of the focal plane as well as the size of the aperture. We demonstrate the advantages of the proposed method by evaluating several camera/lens configurations using prototypical devices.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099504&isnumber=8099483

15. CATS: A Color and Thermal Stereo Benchmark

Abstract: Stereo matching is a well researched area using visible-band color cameras. Thermal images are typically lower resolution, have less texture, and are noisier compared to their visible-band counterparts and are more challenging for stereo matching algorithms. Previous benchmarks for stereo matching either focus entirely on visible-band cameras or contain only a single thermal camera. We present the Color And Thermal Stereo (CATS) benchmark, a dataset consisting of stereo thermal, stereo color, and cross-modality image pairs with high accuracy ground truth (<; 2mm) generated from a LiDAR. We scanned 100 cluttered indoor and 80 outdoor scenes featuring challenging environments and conditions. CATS contains approximately 1400 images of pedestrians, vehicles, electronics, and other thermally interesting objects in different environmental conditions, including nighttime, daytime, and foggy scenes. Ground truth was projected to each of the four cameras to generate color-color, thermal-thermal, and cross-modality disparity maps. A semi-automatic LiDAR to camera alignment procedure was developed that does not require a calibration target. We compare state-of-the-art algorithms to baseline the dataset and show that in the thermal and cross modalities there is still much room for improvement. We expect our dataset to provide researchers with a more diverse set of imaged locations, objects, and modalities than previous benchmarks for stereo matching.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099505&isnumber=8099483

16. Elastic Shape-from-Template with Spatially Sparse Deforming Forces

Abstract: Current Elastic SfT (Shape from Template) methods are based on ℓ2-norm minimization. None can accurately recover the spatial location of the acting forces since ℓ2-norm based minimization tends to find the best tradeoff among noisy data to fit an elastic model. In this work, we study shapes that are deformed with spatially sparse set of forces. We propose two formulations for a new class of SfT problems dubbed here SLE-SfT (Sparse Linear Elastic-SfT). The First ideal formulation uses an ℓ0-norm to minimize the cardinal of non-zero components of the deforming forces. The second relaxed formulation uses an ℓ1-norm to minimize the sum of absolute values of force components. These new formulations do not use Solid Boundary Constraints (SBC) which are usually needed to rigidly position the shape in the frame of the deformed image. We introduce the Projective Elastic Space Property (PESP) that jointly encodes the reprojection constraint and the elastic model. We prove that filling this property is necessary and sufficient for the relaxed formulation to: (i) retrieve the ground-truth 3D deformed shape, (ii) recover the right spatial domain of non-zero deforming forces. (iii) It also proves that we can rigidly place the deformed shape in the image frame without using SBC. Finally, we prove that when filling PESP, resolving the relaxed formulation provides the same ground-truth solution as the ideal formulation. Results with simulated and real data show substantial improvements in recovering the deformed shapes as well as the spatial location of the deforming forces.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099506&isnumber=8099483

17. Distinguishing the Indistinguishable: Exploring Structural Ambiguities via Geodesic Context

Abstract: A perennial problem in structure from motion (SfM) is visual ambiguity posed by repetitive structures. Recent disambiguating algorithms infer ambiguities mainly via explicit background context, thus face limitations in highly ambiguous scenes which are visually indistinguishable. Instead of analyzing local visual information, we propose a novel algorithm for SfM disambiguation that explores the global topology as encoded in photo collections. An important adaptation of this work is to approximate the available imagery using a manifold of viewpoints. We note that, while ambiguous images appear deceptively similar in appearance, they are actually located far apart on geodesics. We establish the manifold by adaptively identifying cameras with adjacent viewpoint, and detect ambiguities via a new measure, geodesic consistency. We demonstrate the accuracy and efficiency of the proposed approach on a range of complex ambiguity datasets, even including the challenging scenes without background conflicts.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099507&isnumber=8099483

18. Multi-scale Continuous CRFs as Sequential Deep Networks for Monocular Depth Estimation

Abstract: This paper addresses the problem of depth estimation from a single still image. Inspired by recent works on multi-scale convolutional neural networks (CNN), we propose a deep model which fuses complementary information derived from multiple CNN side outputs. Different from previous methods, the integration is obtained by means of continuous Conditional Random Fields (CRFs). In particular, we propose two different variations, one based on a cascade of multiple CRFs, the other on a unified graphical model. By designing a novel CNN implementation of mean-field updates for continuous CRFs, we show that both proposed models can be regarded as sequential deep networks and that training can be performed end-to-end. Through extensive experimental evaluation we demonstrate the effectiveness of the proposed approach and establish new state of the art results on publicly available datasets.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099508&isnumber=8099483

19. Dynamic Time-of-Flight

Abstract: Time-of-flight (TOF) depth cameras provide robust depth inference at low power requirements in a wide variety of consumer and industrial applications. These cameras reconstruct a single depth frame from a given set of infrared (IR) frames captured over a very short exposure period. Operating in this mode the camera essentially forgets all information previously captured - and performs depth inference from scratch for every frame. We challenge this practice and propose using previously captured information when inferring depth. An inherent problem we have to address is camera motion over this longer period of collecting observations. We derive a probabilistic framework combining a simple but robust model of camera and object motion, together with an observation model. This combination allows us to integrate information over multiple frames while remaining robust to rapid changes. Operating the camera in this manner has implications in terms of both computational efficiency and how information should be captured. We address these two issues and demonstrate a realtime TOF system with robust temporal integration that improves depth accuracy over strong baseline methods including adaptive spatio-temporal filters.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099509&isnumber=8099483

20. Training Object Class Detectors with Click Supervision

Abstract: Training object class detectors typically requires a large set of images with objects annotated by bounding boxes. However, manually drawing bounding boxes is very time consuming. In this paper we greatly reduce annotation time by proposing center-click annotations: we ask annotators to click on the center of an imaginary bounding box which tightly encloses the object instance. We then incorporate these clicks into existing Multiple Instance Learning techniques for weakly supervised object localization, to jointly localize object bounding boxes over all training images. Extensive experiments on PASCAL VOC 2007 and MS COCO show that: (1) our scheme delivers high-quality detectors, performing substantially better than those produced by weakly supervised techniques, with a modest extra annotation effort, (2) these detectors in fact perform in a range close to those trained from manually drawn bounding boxes, (3) as the center-click task is very fast, our scheme reduces total annotation time by 9x to 18x.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099510&isnumber=8099483

21. Semantic Scene Completion from a Single Depth Image

Abstract: This paper focuses on semantic scene completion, a task for producing a complete 3D voxel representation of volumetric occupancy and semantic labels for a scene from a single-view depth map observation. Previous work has considered scene completion and semantic labeling of depth maps separately. However, we observe that these two problems are tightly intertwined. To leverage the coupled nature of these two tasks, we introduce the semantic scene completion network (SSCNet), an end-to-end 3D convolutional network that takes a single depth image as input and simultaneously outputs occupancy and semantic labels for all voxels in the camera view frustum. Our network uses a dilation-based 3D context module to efficiently expand the receptive field and enable 3D context learning. To train our network, we construct SUNCG - a manually created largescale dataset of synthetic 3D scenes with dense volumetric annotations. Our experiments demonstrate that the joint model outperforms methods addressing each task in isolation and outperforms alternative approaches on the semantic scene completion task. The dataset and code is available at http://sscnet.cs.princeton.edu.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099511&isnumber=8099483

22. 3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions

Abstract: Matching local geometric features on real-world depth images is a challenging task due to the noisy, low-resolution, and incomplete nature of 3D scan data. These difficulties limit the performance of current state-of-art methods, which are typically based on histograms over geometric properties. In this paper, we present 3DMatch, a data-driven model that learns a local volumetric patch descriptor for establishing correspondences between partial 3D data. To amass training data for our model, we propose a self-supervised feature learning method that leverages the millions of correspondence labels found in existing RGB-D reconstructions. Experiments show that our descriptor is not only able to match local geometry in new scenes for reconstruction, but also generalize to different tasks and spatial scales (e.g. instance-level object model alignment for the Amazon Picking Challenge, and mesh surface correspondence). Results show that 3DMatch consistently outperforms other state-of-the-art approaches by a significant margin. Code, data, benchmarks, and pre-trained models are available online at http://3dmatch.cs.princeton.edu.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099512&isnumber=8099483

23. Multi-view Supervision for Single-View Reconstruction via Differentiable Ray Consistency

Abstract: We study the notion of consistency between a 3D shape and a 2D observation and propose a differentiable formulation which allows computing gradients of the 3D shape given an observation from an arbitrary view. We do so by reformulating view consistency using a differentiable ray consistency (DRC) term. We show that this formulation can be incorporated in a learning framework to leverage different types of multi-view observations e.g. foreground masks, depth, color images, semantics etc. as supervision for learning single-view 3D prediction. We present empirical analysis of our technique in a controlled setting. We also show that this approach allows us to improve over existing techniques for single-view reconstruction of objects from the PASCAL VOC dataset.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099513&isnumber=8099483

24. On-the-Fly Adaptation of Regression Forests for Online Camera Relocalisation

Abstract: Camera relocalisation is an important problem in computer vision, with applications in simultaneous localisation and mapping, virtual/augmented reality and navigation. Common techniques either match the current image against keyframes with known poses coming from a tracker, or establish 2D-to-3D correspondences between keypoints in the current image and points in the scene in order to estimate the camera pose. Recently, regression forests have become a popular alternative to establish such correspondences. They achieve accurate results, but must be trained offline on the target scene, preventing relocalisation in new environments. In this paper, we show how to circumvent this limitation by adapting a pre-trained forest to a new scene on the fly. Our adapted forests achieve relocalisation performance that is on par with that of offline forests, and our approach runs in under 150ms, making it desirable for real-time systems that require online relocalisation.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099514&isnumber=8099483

25. Designing Effective Inter-Pixel Information Flow for Natural Image Matting

Abstract: We present a novel, purely affinity-based natural image matting algorithm. Our method relies on carefully defined pixel-to-pixel connections that enable effective use of information available in the image and the trimap. We control the information flow from the known-opacity regions into the unknown region, as well as within the unknown region itself, by utilizing multiple definitions of pixel affinities. This way we achieve significant improvements on matte quality near challenging regions of the foreground object. Among other forms of information flow, we introduce color-mixture flow, which builds upon local linear embedding and effectively encapsulates the relation between different pixel opacities. Our resulting novel linear system formulation can be solved in closed-form and is robust against several fundamental challenges in natural matting such as holes and remote intricate structures. While our method is primarily designed as a standalone natural matting tool, we show that it can also be used for regularizing mattes obtained by various sampling-based methods. Our evaluation using the public alpha matting benchmark suggests a significant performance improvement over the state-of-the-art.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099515&isnumber=8099483

26. Deep Video Deblurring for Hand-Held Cameras

Abstract: Motion blur from camera shake is a major problem in videos captured by hand-held devices. Unlike single-image deblurring, video-based approaches can take advantage of the abundant information that exists across neighboring frames. As a result the best performing methods rely on the alignment of nearby frames. However, aligning images is a computationally expensive and fragile procedure, and methods that aggregate information must therefore be able to identify which regions have been accurately aligned and which have not, a task that requires high level scene understanding. In this work, we introduce a deep learning solution to video deblurring, where a CNN is trained end-to-end to learn how to accumulate information across frames. To train this network, we collected a dataset of real videos recorded with a high frame rate camera, which we use to generate synthetic motion blur for supervision. We show that the features learned from this dataset extend to deblurring motion blur that arises due to camera shake in a wide range of videos, and compare the quality of results to a number of other baselines.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099516&isnumber=8099483

27. Instance-Level Salient Object Segmentation

Abstract: Image saliency detection has recently witnessed rapid progress due to deep convolutional neural networks. However, none of the existing methods is able to identify object instances in the detected salient regions. In this paper, we present a salient instance segmentation method that produces a saliency mask with distinct object instance labels for an input image. Our method consists of three steps, estimating saliency map, detecting salient object contours and identifying salient object instances. For the first two steps, we propose a multiscale saliency refinement network, which generates high-quality salient region masks and salient object contours. Once integrated with multiscale combinatorial grouping and a MAP-based subset optimization framework, our method can generate very promising salient object instance segmentation results. To promote further research and evaluation of salient instance segmentation, we also construct a new database of 1000 images and their pixelwise salient instance annotations. Experimental results demonstrate that our proposed method is capable of achieving state-of-the-art performance on all public benchmarks for salient region detection as well as on our new dataset for salient instance segmentation.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099517&isnumber=8099483

28. Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring

Abstract: Non-uniform blind deblurring for general dynamic scenes is a challenging computer vision problem as blurs arise not only from multiple object motions but also from camera shake, scene depth variation. To remove these complicated motion blurs, conventional energy optimization based methods rely on simple assumptions such that blur kernel is partially uniform or locally linear. Moreover, recent machine learning based methods also depend on synthetic blur datasets generated under these assumptions. This makes conventional deblurring methods fail to remove blurs where blur kernel is difficult to approximate or parameterize (e.g. object motion boundaries). In this work, we propose a multi-scale convolutional neural network that restores sharp images in an end-to-end manner where blur is caused by various sources. Together, we present multi-scale loss function that mimics conventional coarse-to-fine approaches. Furthermore, we propose a new large-scale dataset that provides pairs of realistic blurry image and the corresponding ground truth sharp image that are obtained by a high-speed camera. With the proposed model trained on this dataset, we demonstrate empirically that our method achieves the state-of-the-art performance in dynamic scene deblurring not only qualitatively, but also quantitatively.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099518&isnumber=8099483

29. Diversified Texture Synthesis with Feed-Forward Networks

Abstract: Recent progresses on deep discriminative and generative modeling have shown promising results on texture synthesis. However, existing feed-forward based methods trade off generality for efficiency, which suffer from many issues, such as shortage of generality (i.e., build one network per texture), lack of diversity (i.e., always produce visually identical output) and suboptimality (i.e., generate less satisfying visual effects). In this work, we focus on solving these issues for improved texture synthesis. We propose a deep generative feed-forward network which enables efficient synthesis of multiple textures within one single network and meaningful interpolation between them. Meanwhile, a suite of important techniques are introduced to achieve better convergence and diversity. With extensive experiments, we demonstrate the effectiveness of the proposed model and techniques for synthesizing a large number of textures and show its applications with the stylization.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099519&isnumber=8099483

30. Radiometric Calibration for Internet Photo Collections

Abstract: Radiometrically calibrating the images from Internet photo collections brings photometric analysis from lab data to big image data in the wild, but conventional calibration methods cannot be directly applied to such image data. This paper presents a method to jointly perform radiometric calibration for a set of images in an Internet photo collection. By incorporating the consistency of scene reflectance for corresponding pixels in multiple images, the proposed method estimates radiometric response functions of all the images using a rank minimization framework. Our calibration aligns all response functions in an image set up to the same exponential ambiguity in a robust manner. Quantitative results using both synthetic and real data show the effectiveness of the proposed method.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099520&isnumber=8099483

31. Deeply Aggregated Alternating Minimization for Image Restoration

Abstract: Regularization-based image restoration has remained an active research topic in image processing and computer vision. It often leverages a guidance signal captured in different-fields as an additional cue. In this work, we present a general framework for image restoration, called deeply aggregated alternating minimization (DeepAM). We propose to train deep neural network to advance two of the steps in the conventional AM algorithm: proximal mapping and β-continuation. Both steps are learned from a large dataset in an end-to-end manner. The proposed framework enables the convolutional neural networks (CNNs) to operate as a regularizer in the AM algorithm. We show that our learned regularizer via deep aggregation outperforms the recent data-driven approaches as well as the nonlocal-based methods. The flexibility and effectiveness of our framework are demonstrated in several restoration tasks, including single image denoising, RGB-NIR restoration, and depth superresolution.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099521&isnumber=8099483

32. End-to-End Instance Segmentation with Recurrent Attention

Abstract: While convolutional neural networks have gained impressive success recently in solving structured prediction problems such as semantic segmentation, it remains a challenge to differentiate individual object instances in the scene. Instance segmentation is very important in a variety of applications, such as autonomous driving, image captioning, and visual question answering. Techniques that combine large graphical models with low-level vision have been proposed to address this problem, however, we propose an end-to-end recurrent neural network (RNN) architecture with an attention mechanism to model a human-like counting process, and produce detailed instance segmentations. The network is jointly trained to sequentially produce regions of interest as well as a dominant object segmentation within each region. The proposed model achieves competitive results on the CVPPP [27], KITTI [12], and Cityscapes [8] datasets.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099522&isnumber=8099483

33. SRN: Side-Output Residual Network for Object Symmetry Detection in the Wild

Abstract: In this paper, we establish a baseline for object symmetry detection in complex backgrounds by presenting a new benchmark and an end-to-end deep learning approach, opening up a promising direction for symmetry detection in the wild. The new benchmark, named Sym-PASCAL, spans challenges including object diversity, multi-objects, part-invisibility, and various complex backgrounds that are far beyond those in existing datasets. The proposed symmetry detection approach, named Side-output Residual Network (SRN), leverages output Residual Units (RUs) to fit the errors between the object symmetry ground-truth and the outputs of RUs. By stacking RUs in a deep-to-shallow manner, SRN exploits the flow of errors among multiple scales to ease the problems of fitting complex outputs with limited layers, suppressing the complex backgrounds, and effectively matching object symmetry of different scales. Experimental results validate both the benchmark and its challenging aspects related to real-world images, and the state-of-the-art performance of our symmetry detection approach. The benchmark and the code for SRN are publicly available at https://github.com/KevinKecc/SRN.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099523&isnumber=8099483

34. Deep Image Matting

Abstract: Image matting is a fundamental computer vision problem and has many applications. Previous algorithms have poor performance when an image has similar foreground and background colors or complicated textures. The main reasons are prior methods 1) only use low-level features and 2) lack high-level context. In this paper, we propose a novel deep learning based algorithm that can tackle both these problems. Our deep model has two parts. The first part is a deep convolutional encoder-decoder network that takes an image and the corresponding trimap as inputs and predict the alpha matte of the image. The second part is a small convolutional network that refines the alpha matte predictions of the first network to have more accurate alpha values and sharper edges. In addition, we also create a large-scale image matting dataset including 49300 training images and 1000 testing images. We evaluate our algorithm on the image matting benchmark, our testing set, and a wide variety of real images. Experimental results clearly demonstrate the superiority of our algorithm over previous methods.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099524&isnumber=8099483

35. Wetness and Color from a Single Multispectral Image

Abstract: Visual recognition of wet surfaces and their degrees of wetness is important for many computer vision applications. It can inform slippery spots on a road to autonomous vehicles, muddy areas of a trail to humanoid robots, and the freshness of groceries to us. In the past, monochromatic appearance change, the fact that surfaces darken when wet, has been modeled to recognize wet surfaces. In this paper, we show that color change, particularly in its spectral behavior, carries rich information about a wet surface. We derive an analytical spectral appearance model of wet surfaces that expresses the characteristic spectral sharpening due to multiple scattering and absorption in the surface. We derive a novel method for estimating key parameters of this spectral appearance model, which enables the recovery of the original surface color and the degree of wetness from a single observation. Applied to a multispectral image, the method estimates the spatial map of wetness together with the dry spectral distribution of the surface. To our knowledge, this work is the first to model and leverage the spectral characteristics of wet surfaces to revert its appearance. We conduct comprehensive experimental validation with a number of wet real surfaces. The results demonstrate the accuracy of our model and the effectiveness of our method for surface wetness and color estimation.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099525&isnumber=8099483

36. FC^4: Fully Convolutional Color Constancy with Confidence-Weighted Pooling

Abstract: Improvements in color constancy have arisen from the use of convolutional neural networks (CNNs). However, the patch-based CNNs that exist for this problem are faced with the issue of estimation ambiguity, where a patch may contain insufficient information to establish a unique or even a limited possible range of illumination colors. Image patches with estimation ambiguity not only appear with great frequency in photographs, but also significantly degrade the quality of network training and inference. To overcome this problem, we present a fully convolutional network architecture in which patches throughout an image can carry different confidence weights according to the value they provide for color constancy estimation. These confidence weights are learned and applied within a novel pooling layer where the local estimates are merged into a global solution. With this formulation, the network is able to determine what to learn and how to pool automatically from color constancy datasets without additional supervision. The proposed network also allows for end-to-end training, and achieves higher efficiency and accuracy. On standard benchmarks, our network outperforms the previous state-of-the-art while achieving 120× greater efficiency.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099526&isnumber=8099483

37. Face Normals

Abstract: In this work we pursue a data-driven approach to the problem of estimating surface normals from a single intensity image, focusing in particular on human faces. We introduce new methods to exploit the currently available facial databases for dataset construction and tailor a deep convolutional neural network to the task of estimating facial surface normals in-the-wild. We train a fully convolutional network that can accurately recover facial normals from images including a challenging variety of expressions and facial poses. We compare against state-of-the-art face Shape-from-Shading and 3D reconstruction techniques and show that the proposed network can recover substantially more accurate and realistic normals. Furthermore, in contrast to other existing face-specific surface recovery methods, we do not require the solving of an explicit alignment step due to the fully convolutional nature of our network.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099527&isnumber=8099483

38. A Non-convex Variational Approach to Photometric Stereo under Inaccurate Lighting

Abstract: This paper tackles the photometric stereo problem in the presence of inaccurate lighting, obtained either by calibration or by an uncalibrated photometric stereo method. Based on a precise modeling of noise and outliers, a robust variational approach is introduced. It explicitly accounts for self-shadows, and enforces robustness to cast-shadows and specularities by resorting to redescending M-estimators. The resulting non-convex model is solved by means of a computationally efficient alternating reweighted least-squares algorithm. Since it implicitly enforces integrability, the new variational approach can refine both the intensities and the directions of the lighting.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099528&isnumber=8099483

39. A Linear Extrinsic Calibration of Kaleidoscopic Imaging System from Single 3D Point

Abstract: This paper proposes a new extrinsic calibration of kaleidoscopic imaging system by estimating normals and distances of the mirrors. The problem to be solved in this paper is a simultaneous estimation of all mirror parameters consistent throughout multiple reflections. Unlike conventional methods utilizing a pair of direct and mirrored images of a reference 3D object to estimate the parameters on a per-mirror basis, our method renders the simultaneous estimation problem into solving a linear set of equations. The key contribution of this paper is to introduce a linear estimation of multiple mirror parameters from kaleidoscopic 2D projections of a single 3D point of unknown geometry. Evaluations with synthesized and real images demonstrate the performance of the proposed algorithm in comparison with conventional methods.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099529&isnumber=8099483

40. Polarimetric Multi-view Stereo

Abstract: Multi-view stereo relies on feature correspondences for 3D reconstruction, and thus is fundamentally flawed in dealing with featureless scenes. In this paper, we propose polarimetric multi-view stereo, which combines per-pixel photometric information from polarization with epipolar constraints from multiple views for 3D reconstruction. Polarization reveals surface normal information, and is thus helpful to propagate depth to featureless regions. Polarimetric multi-view stereo is completely passive and can be applied outdoors in uncontrolled illumination, since the data capture can be done simply with either a polarizer or a polarization camera. Unlike previous work on shape-from-polarization which is limited to either diffuse polarization or specular polarization only, we propose a novel polarization imaging model that can handle real-world objects with mixed polarization. We prove there are exactly two types of ambiguities on estimating surface azimuth angles from polarization, and we resolve them with graph optimization and iso-depth contour tracing. This step significantly improves the initial depth map estimate, which are later fused together for complete 3D reconstruction. Extensive experimental results demonstrate high-quality 3D reconstruction and better performance than state-of-the-art multi-view stereo methods, especially on featureless 3D objects, such as ceramic tiles, office room with white walls, and highly reflective cars in the outdoors.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099530&isnumber=8099483

41. An Exact Penalty Method for Locally Convergent Maximum Consensus

Abstract: Maximum consensus estimation plays a critically important role in computer vision. Currently, the most prevalent approach draws from the class of non-deterministic hypothesize-and-verify algorithms, which are cheap but do not guarantee solution quality. On the other extreme, there are global algorithms which are exhaustive search in nature and can be costly for practical-sized inputs. This paper aims to fill the gap between the two extremes by proposing a locally convergent maximum consensus algorithm. Our method is based on a formulating the problem with linear complementarity constraints, then defining a penalized version which is provably equivalent to the original problem. Based on the penalty problem, we develop a Frank-Wolfe algorithm that can deterministically solve the maximum consensus problem. Compared to the randomized techniques, our method is deterministic and locally convergent, relative to the global algorithms, our method is much more practical on realistic input sizes. Further, our approach is naturally applicable to problems with geometric residuals.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099531&isnumber=8099483

42. Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing

Abstract: Monocular 3D object parsing is highly desirable in various scenarios including occlusion reasoning and holistic scene interpretation. We present a deep convolutional neural network (CNN) architecture to localize semantic parts in 2D image and 3D space while inferring their visibility states, given a single RGB image. Our key insight is to exploit domain knowledge to regularize the network by deeply supervising its hidden layers, in order to sequentially infer intermediate concepts associated with the final task. To acquire training data in desired quantities with ground truth 3D shape and relevant concepts, we render 3D object CAD models to generate large-scale synthetic data and simulate challenging occlusion configurations between objects. We train the network only on synthetic data and demonstrate state-of-the-art performances on real image benchmarks including an extended version of KITTI, PASCAL VOC, PASCAL3D+ and IKEA for 2D and 3D keypoint localization and instance segmentation. The empirical results substantiate the utility of our deep supervision scheme by demonstrating effective transfer of knowledge from synthetic data to real images, resulting in less overfitting compared to standard end-to-end training.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099532&isnumber=8099483

43. Amodal Detection of 3D Objects: Inferring 3D Bounding Boxes from 2D Ones in RGB-Depth Images

Abstract: This paper addresses the problem of amodal perception of 3D object detection. The task is to not only find object localizations in the 3D world, but also estimate their physical sizes and poses, even if only parts of them are visible in the RGB-D image. Recent approaches have attempted to harness point cloud from depth channel to exploit 3D features directly in the 3D space and demonstrated the superiority over traditional 2.5D representation approaches. We revisit the amodal 3D detection problem by sticking to the 2.5D representation framework, and directly relate 2.5D visual appearance to 3D objects. We propose a novel 3D object detection system that simultaneously predicts objects 3D locations, physical sizes, and orientations in indoor scenes. Experiments on the NYUV2 dataset show our algorithm significantly outperforms the state-of-the-art and indicates 2.5D representation is capable of encoding features for 3D amodal object detection. All source code and data is on https://github.com/phoenixnn/Amodal3Det.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099533&isnumber=8099483

44. Transition Forests: Learning Discriminative Temporal Transitions for Action Recognition and Detection

Abstract: A human action can be seen as transitions between ones body poses over time, where the transition depicts a temporal relation between two poses. Recognizing actions thus involves learning a classifier sensitive to these pose transitions as well as to static poses. In this paper, we introduce a novel method called transitions forests, an ensemble of decision trees that both learn to discriminate static poses and transitions between pairs of two independent frames. During training, node splitting is driven by alternating two criteria: the standard classification objective that maximizes the discrimination power in individual frames, and the proposed one in pairwise frame transitions. Growing the trees tends to group frames that have similar associated transitions and share same action label incorporating temporal information that was not available otherwise. Unlike conventional decision trees where the best split in a node is determined independently of other nodes, the transition forests try to find the best split of nodes jointly (within a layer) for incorporating distant node transitions. When inferring the class label of a new frame, it is passed down the trees and the prediction is made based on previous frame predictions and the current one in an efficient and online manner. We apply our method on varied skeleton action recognition and online detection datasets showing its suitability over several baselines and state-of-the-art approaches.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099534&isnumber=8099483

45. Scene Flow to Action Map: A New Representation for RGB-D Based Action Recognition with Convolutional Neural Networks

Abstract: Scene flow describes the motion of 3D objects in real world and potentially could be the basis of a good feature for 3D action recognition. However, its use for action recognition, especially in the context of convolutional neural networks (ConvNets), has not been previously studied. In this paper, we propose the extraction and use of scene flow for action recognition from RGB-D data. Previous works have considered the depth and RGB modalities as separate channels and extract features for later fusion. We take a different approach and consider the modalities as one entity, thus allowing feature extraction for action recognition at the beginning. Two key questions about the use of scene flow for action recognition are addressed: how to organize the scene flow vectors and how to represent the long term dynamics of videos based on scene flow. In order to calculate the scene flow correctly on the available datasets, we propose an effective self-calibration method to align the RGB and depth data spatially without knowledge of the camera parameters. Based on the scene flow vectors, we propose a new representation, namely, Scene Flow to Action Map (SFAM), that describes several long term spatio-temporal dynamics for action recognition. We adopt a channel transform kernel to transform the scene flow vectors to an optimal color space analogous to RGB. This transformation takes better advantage of the trained ConvNets models over ImageNet. Experimental results indicate that this new representation can surpass the performance of state-of-the-art methods on two large public datasets.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099535&isnumber=8099483

46. Detecting Masked Faces in the Wild with LLE-CNNs

Abstract: Detecting faces with occlusions is a challenging task due to two main reasons: 1) the absence of large datasets of masked faces, and 2) the absence of facial cues from the masked regions. To address these two issues, this paper first introduces a dataset, denoted as MAFA, with 30, 811 Internet images and 35, 806 masked faces. Faces in the dataset have various orientations and occlusion degrees, while at least one part of each face is occluded by mask. Based on this dataset, we further propose LLE-CNNs for masked face detection, which consist of three major modules. The Proposal module first combines two pre-trained CNNs to extract candidate facial regions from the input image and represent them with high dimensional descriptors. After that, the Embedding module is incorporated to turn such descriptors into a similarity-based descriptor by using locally linear embedding (LLE) algorithm and the dictionaries trained on a large pool of synthesized normal faces, masked faces and non-faces. In this manner, many missing facial cues can be largely recovered and the influences of noisy cues introduced by diversified masks can be greatly alleviated. Finally, the Verification module is incorporated to identify candidate facial regions and refine their positions by jointly performing the classification and regression tasks within a unified CNN. Experimental results on the MAFA dataset show that the proposed approach remarkably outperforms 6 state-of-the-arts by at least 15.6%.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099536&isnumber=8099483

47. A Domain Based Approach to Social Relation Recognition

Abstract: Social relations are the foundation of human daily life. Developing techniques to analyze such relations from visual data bears great potential to build machines that better understand us and are capable of interacting with us at a social level. Previous investigations have remained partial due to the overwhelming diversity and complexity of the topic and consequently have only focused on a handful of social relations. In this paper, we argue that the domain-based theory from social psychology is a great starting point to systematically approach this problem. The theory provides coverage of all aspects of social relations and equally is concrete and predictive about the visual attributes and behaviors defining the relations included in each domain. We provide the first dataset built on this holistic conceptualization of social life that is composed of a hierarchical label space of social domains and social relations. We also contribute the first models to recognize such domains and relations and find superior performance for attribute based features. Beyond the encouraging performance of the attribute based approach, we also find interpretable features that are in accordance with the predictions from social psychology literature. Beyond our findings, we believe that our contributions more tightly interleave visual recognition and social psychology theory that has the potential to complement the theoretical work in the area with empirical and data-driven models of social life.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099537&isnumber=8099483

48. Spatio-Temporal Naive-Bayes Nearest-Neighbor (ST-NBNN) for Skeleton-Based Action Recognition

Abstract: Motivated by previous success of using non-parametric methods to recognize objects, e.g., NBNN [2], we extend it to recognize actions using skeletons. Each 3D action is presented by a sequence of 3D poses. Similar to NBNN, our proposed Spatio-Temporal-NBNN applies stage-to-class distance to classify actions. However, ST-NBNN takes the spatio-temporal structure of 3D actions into consideration and relaxes the Naive Bayes assumption of NBNN. Specifically, ST-NBNN adopts bilinear classifiers [19] to identify both key temporal stages as well as spatial joints for action classification. Although only using a linear classifier, experiments on three benchmark datasets show that by combining the strength of both non-parametric and parametric models, ST-NBNN can achieve competitive performance compared with state-of-the-art results using sophisticated models such as deep learning. Moreover, by identifying key skeleton joints and temporal stages for each action class, our ST-NBNN can capture the essential spatio-temporal patterns that play key roles of recognizing actions, which is not always achievable by using end-to-end models.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099538&isnumber=8099483

49. Personalizing Gesture Recognition Using Hierarchical Bayesian Neural Networks

Abstract: Building robust classifiers trained on data susceptible to group or subject-specific variations is a challenging pattern recognition problem. We develop hierarchical Bayesian neural networks to capture subject-specific variations and share statistical strength across subjects. Leveraging recent work on learning Bayesian neural networks, we build fast, scalable algorithms for inferring the posterior distribution over all network weights in the hierarchy. We also develop methods for adapting our model to new subjects when a small number of subject-specific personalization data is available. Finally, we investigate active learning algorithms for interactively labeling personalization data in resource-constrained scenarios. Focusing on the problem of gesture recognition where inter-subject variations are commonplace, we demonstrate the effectiveness of our proposed techniques. We test our framework on three widely used gesture recognition datasets, achieving personalization performance competitive with the state-of-the-art.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099539&isnumber=8099483

50. Real-Time 3D Model Tracking in Color and Depth on a Single CPU Core

Abstract: We present a novel method to track 3D models in color and depth data. To this end, we introduce approximations that accelerate the state-of-the-art in region-based tracking by an order of magnitude while retaining similar accuracy. Furthermore, we show how the method can be made more robust in the presence of depth data and consequently formulate a new joint contour and ICP tracking energy. We present better results than the state-of-the-art while being much faster then most other methods and achieving all of the above on a single CPU core.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099540&isnumber=8099483

51. Multi-scale FCN with Cascaded Instance Aware Segmentation for Arbitrary Oriented Word Spotting in the Wild

Abstract: Scene text detection has attracted great attention these years. Text potentially exist in a wide variety of images or videos and play an important role in understanding the scene. In this paper, we present a novel text detection algorithm which is composed of two cascaded steps: (1) a multi-scale fully convolutional neural network (FCN) is proposed to extract text block regions, (2) a novel instance (word or line) aware segmentation is designed to further remove false positives and obtain word instances. The proposed algorithm can accurately localize word or text line in arbitrary orientations, including curved text lines which cannot be handled in a lot of other frameworks. Our algorithm achieved state-of-the-art performance in ICDAR 2013 (IC13), ICDAR 2015 (IC15) and CUTE80 and Street View Text (SVT) benchmark datasets.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099541&isnumber=8099483

52. Viraliency: Pooling Local Virality

Abstract: In our overly-connected world, the automatic recognition of virality - the quality of an image or video to be rapidly and widely spread in social networks - is of crucial importance, and has recently awaken the interest of the computer vision community. Concurrently, recent progress in deep learning architectures showed that global pooling strategies allow the extraction of activation maps, which highlight the parts of the image most likely to contain instances of a certain class. We extend this concept by introducing a pooling layer that learns the size of the support area to be averaged: the learned top-N average (LENA) pooling. We hypothesize that the latent concepts (feature maps) describing virality may require such a rich pooling strategy. We assess the effectiveness of the LENA layer by appending it on top of a convolutional siamese architecture and evaluate its performance on the task of predicting and localizing virality. We report experiments on two publicly available datasets annotated for virality and show that our method outperforms state-of-the-art approaches.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099542&isnumber=8099483

53. A Non-local Low-Rank Framework for Ultrasound Speckle Reduction

Abstract: Speckle refers to the granular patterns that occur in ultrasound images due to wave interference. Speckle removal can greatly improve the visibility of the underlying structures in an ultrasound image and enhance subsequent post processing. We present a novel framework for speckle removal based on low-rank non-local filtering. Our approach works by first computing a guidance image that assists in the selection of candidate patches for non-local filtering in the face of significant speckles. The candidate patches are further refined using a low-rank minimization estimated using a truncated weighted nuclear norm (TWNN) and structured sparsity. We show that the proposed filtering framework produces results that outperform state-of-the-art methods both qualitatively and quantitatively. This framework also provides better segmentation results when used for pre-processing ultrasound images.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099543&isnumber=8099483

54. Video Acceleration Magnification

Abstract: The ability to amplify or reduce subtle image changes over time is useful in contexts such as video editing, medical video analysis, product quality control and sports. In these contexts there is often large motion present which severely distorts current video amplification methods that magnify change linearly. In this work we propose a method to cope with large motions while still magnifying small changes. We make the following two observations: i) large motions are linear on the temporal scale of the small changes, ii) small changes deviate from this linearity. We ignore linear motion and propose to magnify acceleration. Our method is pure Eulerian and does not require any optical flow, temporal alignment or region annotations. We link temporal second-order derivative filtering to spatial acceleration magnification. We apply our method to moving objects where we show motion magnification and color magnification. We provide quantitative as well as qualitative evidence for our method while comparing to the state-of-the-art.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099544&isnumber=8099483

55. Superpixel-Based Tracking-by-Segmentation Using Markov Chains

Abstract: We propose a simple but effective tracking-by-segmentation algorithm using Absorbing Markov Chain (AMC) on superpixel segmentation, where target state is estimated by a combination of bottom-up and top-down approaches, and target segmentation is propagated to subsequent frames in a recursive manner. Our algorithm constructs a graph for AMC using the superpixels identified in two consecutive frames, where background superpixels in the previous frame correspond to absorbing vertices while all other superpixels create transient ones. The weight of each edge depends on the similarity of scores in the end superpixels, which are learned by support vector regression. Once graph construction is completed, target segmentation is estimated using the absorption time of each superpixel. The proposed tracking algorithm achieves substantially improved performance compared to the state-of-the-art segmentation-based tracking techniques in multiple challenging datasets.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099545&isnumber=8099483

56. BranchOut: Regularization for Online Ensemble Tracking with Convolutional Neural Networks

Abstract: We propose an extremely simple but effective regularization technique of convolutional neural networks (CNNs), referred to as BranchOut, for online ensemble tracking. Our algorithm employs a CNN for target representation, which has a common convolutional layers but has multiple branches of fully connected layers. For better regularization, a subset of branches in the CNN are selected randomly for online learning whenever target appearance models need to be updated. Each branch may have a different number of layers to maintain variable abstraction levels of target appearances. BranchOut with multi-level target representation allows us to learn robust target appearance models with diversity and handle various challenges in visual tracking problem effectively. The proposed algorithm is evaluated in standard tracking benchmarks and shows the state-of-the-art performance even without additional pretraining on external tracking sequences.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099546&isnumber=8099483

57. Learning Motion Patterns in Videos

Abstract: The problem of determining whether an object is in motion, irrespective of camera motion, is far from being solved. We address this challenging task by learning motion patterns in videos. The core of our approach is a fully convolutional network, which is learned entirely from synthetic video sequences, and their ground-truth optical flow and motion segmentation. This encoder-decoder style architecture first learns a coarse representation of the optical flow field features, and then refines it iteratively to produce motion labels at the original high-resolution. We further improve this labeling with an objectness map and a conditional random field, to account for errors in optical flow, and also to focus on moving things rather than stuff. The output label of each pixel denotes whether it has undergone independent motion, i.e., irrespective of camera motion. We demonstrate the benefits of this learning framework on the moving object segmentation task, where the goal is to segment all objects in motion. Our approach outperforms the top method on the recently released DAVIS benchmark dataset, comprising real-world sequences, by 5.6%. We also evaluate on the Berkeley motion segmentation database, achieving state-of-the-art results.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099547&isnumber=8099483

58. Deep Level Sets for Salient Object Detection

Abstract: Deep learning has been applied to saliency detection in recent years. The superior performance has proved that deep networks can model the semantic properties of salient objects. Yet it is difficult for a deep network to discriminate pixels belonging to similar receptive fields around the object boundaries, thus deep networks may output maps with blurred saliency and inaccurate boundaries. To tackle such an issue, in this work, we propose a deep Level Set network to produce compact and uniform saliency maps. Our method drives the network to learn a Level Set function for salient objects so it can output more accurate boundaries and compact saliency. Besides, to propagate saliency information among pixels and recover full resolution saliency map, we extend a superpixel-based guided filter to be a layer in the network. The proposed network has a simple structure and is trained end-to-end. During testing, the network can produce saliency maps by efficiently feedforwarding testing images at a speed over 12FPS on GPUs. Evaluations on benchmark datasets show that the proposed method achieves state-of-the-art performance.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099548&isnumber=8099483

59. Binary Constraint Preserving Graph Matching

Abstract: Graph matching is a fundamental problem in computer vision and pattern recognition area. In general, it can be formulated as an Integer Quadratic Programming (IQP) problem. Since it is NP-hard, approximate relaxations are required. In this paper, a new graph matching method has been proposed. There are three main contributions of the proposed method: (1) we propose a new graph matching relaxation model, called Binary Constraint Preserving Graph Matching (BPGM), which aims to incorporate the discrete binary mapping constraints more in graph matching relaxation. Our BPGM is motivated by a new observation that the discrete binary constraints in IQP matching problem can be represented (or encoded) exactly by a ℓ2-norm constraint. (2) An effective projection algorithm has been derived to solve BPGM model. (3) Using BPGM, we propose a path-following strategy to optimize IQP matching problem and thus obtain a desired discrete solution at convergence. Promising experimental results show the effectiveness of the proposed method.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099549&isnumber=8099483

60. From Local to Global: Edge Profiles to Camera Motion in Blurred Images

Abstract: In this work, we investigate the relation between the edge profiles present in a motion blurred image and the underlying camera motion responsible for causing the motion blur. While related works on camera motion estimation (CME) rely on the strong assumption of space-invariant blur, we handle the challenging case of general camera motion. We first show how edge profiles alone can be harnessed to perform direct CME from a single observation. While it is routine for conventional methods to jointly estimate the latent image too through alternating minimization, our above scheme is best-suited when such a pursuit is either impractical or inefficacious. For applications that actually favor an alternating minimization strategy, the edge profiles can serve as a valuable cue. We incorporate a suitably derived constraint from edge profiles into an existing blind deblurring framework and demonstrate improved restoration performance. Experiments reveal that this approach yields state-of-the-art results for the blind deblurring problem.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099550&isnumber=8099483

61. What is the Space of Attenuation Coefficients in Underwater Computer Vision?

Abstract: Underwater image reconstruction methods require the knowledge of wideband attenuation coefficients per color channel. Current estimation methods for these coefficients require specialized hardware or multiple images, and none of them leverage the multitude of existing ocean optical measurements as priors. Here, we aim to constrain the set of physically-feasible wideband attenuation coefficients in the ocean by utilizing water attenuation measured worldwide by oceanographers. We calculate the space of valid wideband effective attenuation coefficients in the 3D RGB domain and find that a bound manifold in 3-space sufficiently represents the variation from the clearest to murkiest waters. We validate our model using in situ experiments in two different optical water bodies, the Red Sea and the Mediterranean. Moreover, we show that contradictory to the common image formation model, the coefficients depend on the imaging range and object reflectance, and quantify the errors resulting from ignoring these dependencies.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099551&isnumber=8099483

62. Robust Energy Minimization for BRDF-Invariant Shape from Light Fields

Abstract: Highly effective optimization frameworks have been developed for traditional multiview stereo relying on lambertian photoconsistency. However, they do not account for complex material properties. On the other hand, recent works have explored PDE invariants for shape recovery with complex BRDFs, but they have not been incorporated into robust numerical optimization frameworks. We present a variational energy minimization framework for robust recovery of shape in multiview stereo with complex, unknown BRDFs. While our formulation is general, we demonstrate its efficacy on shape recovery using a single light field image, where the microlens array may be considered as a realization of a purely translational multiview stereo setup. Our formulation automatically balances contributions from texture gradients, traditional Lambertian photoconsistency, an appropriate BRDF-invariant PDE and a smoothness prior. Unlike prior works, our energy function inherently handles spatially-varying BRDFs and albedos. Extensive experiments with synthetic and real data show that our optimization framework consistently achieves errors lower than Lambertian baselines and further, is more robust than prior BRDF-invariant reconstruction methods.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099552&isnumber=8099483

63. Boundary-Aware Instance Segmentation

Abstract: We address the problem of instance-level semantic segmentation, which aims at jointly detecting, segmenting and classifying every individual object in an image. In this context, existing methods typically propose candidate objects, usually as bounding boxes, and directly predict a binary mask within each such proposal. As a consequence, they cannot recover from errors in the object candidate generation process, such as too small or shifted boxes. In this paper, we introduce a novel object segment representation based on the distance transform of the object masks. We then design an object mask network (OMN) with a new residual-deconvolution architecture that infers such a representation and decodes it into the final binary object mask. This allows us to predict masks that go beyond the scope of the bounding boxes and are thus robust to inaccurate object candidates. We integrate our OMN into a Multitask Network Cascade framework, and learn the resulting boundary-aware instance segmentation (BAIS) network in an end-to-end manner. Our experiments on the PASCAL VOC 2012 and the Cityscapes datasets demonstrate the benefits of our approach, which outperforms the state-of-the-art in both object proposal generation and instance segmentation.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099553&isnumber=8099483

64. Spatially-Varying Blur Detection Based on Multiscale Fused and Sorted Transform Coefficients of Gradient Magnitudes

Abstract: The detection of spatially-varying blur without having any information about the blur type is a challenging task. In this paper, we propose a novel effective approach to address this blur detection problem from a single image without requiring any knowledge about the blur type, level, or camera settings. Our approach computes blur detection maps based on a novel High-frequency multiscale Fusion and Sort Transform (HiFST) of gradient magnitudes. The evaluations of the proposed approach on a diverse set of blurry images with different blur types, levels, and contents demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods qualitatively and quantitatively.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099554&isnumber=8099483

65. Model-Based Iterative Restoration for Binary Document Image Compression with Dictionary Learning

Abstract: The inherent noise in the observed (e.g., scanned) binary document image degrades the image quality and harms the compression ratio through breaking the pattern repentance and adding entropy to the document images. In this paper, we design a cost function in Bayesian framework with dictionary learning. Minimizing our cost function produces a restored image which has better quality than that of the observed noisy image, and a dictionary for representing and encoding the image. After the restoration, we use this dictionary (from the same cost function) to encode the restored image following the symbol-dictionary framework by JBIG2 standard with the lossless mode. Experimental results with a variety of document images demonstrate that our method improves the image quality compared with the observed image, and simultaneously improves the compression ratio. For the test images with synthetic noise, our method reduces the number of flipped pixels by 48.2% and improves the compression ratio by 36.36% as compared with the best encoding methods. For the test images with real noise, our method visually improves the image quality, and outperforms the cutting-edge method by 28.27% in terms of the compression ratio.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099555&isnumber=8099483

66. FCSS: Fully Convolutional Self-Similarity for Dense Semantic Correspondence

Abstract: We present a descriptor, called fully convolutional self-similarity (FCSS), for dense semantic correspondence. To robustly match points among different instances within the same object class, we formulate FCSS using local self-similarity (LSS) within a fully convolutional network. In contrast to existing CNN-based descriptors, FCSS is inherently insensitive to intra-class appearance variations because of its LSS-based structure, while maintaining the precise localization ability of deep neural networks. The sampling patterns of local structure and the self-similarity measure are jointly learned within the proposed network in an end-to-end and multi-scale manner. As training data for semantic correspondence is rather limited, we propose to leverage object candidate priors provided in existing image datasets and also correspondence consistency between object pairs to enable weakly-supervised learning. Experiments demonstrate that FCSS outperforms conventional handcrafted descriptors and CNN-based descriptors on various benchmarks.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099556&isnumber=8099483

67. Learning by Association — A Versatile Semi-Supervised Training Method for Neural Networks

Abstract: In many real-world scenarios, labeled data for a specific machine learning task is costly to obtain. Semi-supervised training methods make use of abundantly available unlabeled data and a smaller number of labeled examples. We propose a new framework for semi-supervised training of deep neural networks inspired by learning in humans. Associations are made from embeddings of labeled samples to those of unlabeled ones and back. The optimization schedule encourages correct association cycles that end up at the same class from which the association was started and penalizes wrong associations ending at a different class. The implementation is easy to use and can be added to any existing end-to-end training setup. We demonstrate the capabilities of learning by association on several data sets and show that it can improve performance on classification tasks tremendously by making use of additionally available unlabeled data. In particular, for cases with few labeled data, our training scheme outperforms the current state of the art on SVHN.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099557&isnumber=8099483

68. Dilated Residual Networks

Abstract: Convolutional networks for image classification progressively reduce resolution until the image is represented by tiny feature maps in which the spatial structure of the scene is no longer discernible. Such loss of spatial acuity can limit image classification accuracy and complicate the transfer of the model to downstream applications that require detailed scene understanding. These problems can be alleviated by dilation, which increases the resolution of output feature maps without reducing the receptive field of individual neurons. We show that dilated residual networks (DRNs) outperform their non-dilated counterparts in image classification without increasing the models depth or complexity. We then study gridding artifacts introduced by dilation, develop an approach to removing these artifacts (degridding), and show that this further increases the performance of DRNs. In addition, we show that the accuracy advantage of DRNs is further magnified in downstream applications such as object localization and semantic segmentation.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099558&isnumber=8099483

69. Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction

Abstract: We propose split-brain autoencoders, a straightforward modification of the traditional autoencoder architecture, for unsupervised representation learning. The method adds a split to the network, resulting in two disjoint sub-networks. Each sub-network is trained to perform a difficult task - predicting one subset of the data channels from another. Together, the sub-networks extract features from the entire input signal. By forcing the network to solve crosschannel prediction tasks, we induce a representation within the network which transfers well to other, unseen tasks. This method achieves state-of-the-art performance on several large-scale transfer learning benchmarks.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099559&isnumber=8099483

70. Nonnegative Matrix Underapproximation for Robust Multiple Model Fitting

Abstract: In this work, we introduce a highly efficient algorithm to address the nonnegative matrix underapproximation (NMU) problem, i.e., nonnegative matrix factorization (NMF) with an additional underapproximation constraint. NMU results are interesting as, compared to traditional NMF, they present additional sparsity and part-based behavior, explaining unique data features. To show these features in practice, we first present an application to the analysis of climate data. We then present an NMU-based algorithm to robustly fit multiple parametric models to a dataset. The proposed approach delivers state-of-the-art results for the estimation of multiple fundamental matrices and homographies, outperforming other alternatives in the literature and exemplifying the use of efficient NMU computations.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099560&isnumber=8099483

71. Truncated Max-of-Convex Models

Abstract: Truncated convex models (TCM) are a special case of pair-wise random fields that have been widely used in computer vision. However, by restricting the order of the potentials to be at most two, they fail to capture useful image statistics. We propose a natural generalization of TCM to high-order random fields, which we call truncated max-of-convex models (TMCM). The energy function of TMCM consists of two types of potentials: (i) unary potential, which has no restriction on its form, and (ii) high-order potential, which is the sum of the truncation of the m largest convex distances over disjoint pairs of random variables in an arbitrary size clique. The use of a convex distance function encourages smoothness, while truncation allows for discontinuities in the labeling. By using m 1, TMCM provides robustness towards errors in the definition of the cliques. In order to minimize the energy function of a TMCM over all possible labelings, we design an efficient st-mincut based range expansion algorithm. We prove the accuracy of our algorithm by establishing strong multiplicative bounds for several special cases of interest. Using synthetic and standard real datasets, we demonstrate the benefit of our high-order TMCM over pairwise TCM, as well as the benefit of our range expansion algorithm over other st-mincut based approaches.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099561&isnumber=8099483

72. Additive Component Analysis

Abstract: Principal component analysis (PCA) is one of the most versatile tools for unsupervised learning with applications ranging from dimensionality reduction to exploratory data analysis and visualization. While much effort has been devoted to encouraging meaningful representations through regularization (e.g. non-negativity or sparsity), underlying linearity assumptions can limit their effectiveness. To address this issue, we propose Additive Component Analysis (ACA), a novel nonlinear extension of PCA. Inspired by multivariate nonparametric regression with additive models, ACA fits a smooth manifold to data by learning an explicit mapping from a low-dimensional latent space to the input space, which trivially enables applications like denoising. Furthermore, ACA can be used as a drop-in replacement in many algorithms that use linear component analysis methods as a subroutine via the local tangent space of the learned manifold. Unlike many other nonlinear dimensionality reduction techniques, ACA can be efficiently applied to large datasets since it does not require computing pairwise similarities or storing training data during testing. Multiple ACA layers can also be composed and learned jointly with essentially the same procedure for improved representational power, demonstrating the encouraging potential of nonparametric deep learning. We evaluate ACA on a variety of datasets, showing improved robustness, reconstruction performance, and interpretability.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099562&isnumber=8099483

73. Subspace Clustering via Variance Regularized Ridge Regression

Abstract: Spectral clustering based subspace clustering methods have emerged recently. When the inputs are 2-dimensional (2D) data, most existing clustering methods convert such data to vectors as preprocessing, which severely damages spatial information of the data. In this paper, we propose a novel subspace clustering method for 2D data with enhanced capability of retaining spatial information for clustering. It seeks two projection matrices and simultaneously constructs a linear representation of the projected data, such that the sought projections help construct the most expressive representation with the most variational information. We regularize our method based on covariance matrices directly obtained from 2D data, which have much smaller size and are more computationally amiable. Moreover, to exploit nonlinear structures of the data, a nonlinear version is proposed, which constructs an adaptive manifold according to updated projections. The learning processes of projections, representation, and manifold thus mutually enhance each other, leading to a powerful data representation. Efficient optimization procedures are proposed, which generate non-increasing objective value sequence with theoretical convergence guarantee. Extensive experimental results confirm the effectiveness of proposed method.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099563&isnumber=8099483

74. The Incremental Multiresolution Matrix Factorization Algorithm

Abstract: Multiresolution analysis and matrix factorization are foundational tools in computer vision. In this work, we study the interface between these two distinct topics and obtain techniques to uncover hierarchical block structure in symmetric matrices - an important aspect in the success of many vision problems. Our new algorithm, the incremental multiresolution matrix factorization, uncovers such structure one feature at a time, and hence scales well to large matrices. We describe how this multiscale analysis goes much farther than what a direct global factorization of the data can identify. We evaluate the efficacy of the resulting factorizations for relative leveraging within regression tasks using medical imaging data. We also use the factorization on representations learned by popular deep networks, providing evidence of their ability to infer semantic relationships even when they are not explicitly trained to do so. We show that this algorithm can be used as an exploratory tool to improve the network architecture, and within numerous other settings in vision.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099564&isnumber=8099483

75. Transformation-Grounded Image Generation Network for Novel 3D View Synthesis

Abstract: We present a transformation-grounded image generation network for novel 3D view synthesis from a single image. Our approach first explicitly infers the parts of the geometry visible both in the input and novel views and then casts the remaining synthesis problem as image completion. Specifically, we both predict a flow to move the pixels from the input to the novel view along with a novel visibility map that helps deal with occulsion/disocculsion. Next, conditioned on those intermediate results, we hallucinate (infer) parts of the object invisible in the input image. In addition to the new network structure, training with a combination of adversarial and perceptual loss results in a reduction in common artifacts of novel view synthesis such as distortions and holes, while successfully generating high frequency details and preserving visual aspects of the input image. We evaluate our approach on a wide range of synthetic and real examples. Both qualitative and quantitative results show our method achieves significantly better results compared to existing methods.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099565&isnumber=8099483

76. Learning Dynamic Guidance for Depth Image Enhancement

Abstract: The depth images acquired by consumer depth sensors (e.g., Kinect and ToF) usually are of low resolution and insufficient quality. One natural solution is to incorporate with high resolution RGB camera for exploiting their statistical correlation. However, most existing methods are intuitive and limited in characterizing the complex and dynamic dependency between intensity and depth images. To address these limitations, we propose a weighted analysis representation model for guided depth image enhancement, which advances the conventional methods in two aspects: (i) task driven learning and (ii) dynamic guidance. First, we generalize the analysis representation model by including a guided weight function for dependency modeling. And the task-driven learning formulation is introduced to obtain the optimized guidance tailored to specific enhancement task. Second, the depth image is gradually enhanced along with the iterations, and thus the guidance should also be dynamically adjusted to account for the updating of depth image. To this end, stage-wise parameters are learned for dynamic guidance. Experiments on guided depth image upsampling and noisy depth image restoration validate the effectiveness of our method.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099566&isnumber=8099483

77. A-Lamp: Adaptive Layout-Aware Multi-patch Deep Convolutional Neural Network for Photo Aesthetic Assessment

Abstract: Deep convolutional neural networks (CNN) have recently been shown to generate promising results for aesthetics assessment. However, the performance of these deep CNN methods is often compromised by the constraint that the neural network only takes the fixed-size input. To accommodate this requirement, input images need to be transformed via cropping, warping, or padding, which often alter image composition, reduce image resolution, or cause image distortion. Thus the aesthetics of the original images is impaired because of potential loss of fine grained details and holistic image layout. However, such fine grained details and holistic image layout is critical for evaluating an images aesthetics. In this paper, we present an Adaptive Layout-Aware Multi-Patch Convolutional Neural Network (A-Lamp CNN) architecture for photo aesthetic assessment. This novel scheme is able to accept arbitrary sized images, and learn from both fined grained details and holistic image layout simultaneously. To enable training on these hybrid inputs, we extend the method by developing a dedicated double-subnet neural network structure, i.e. a Multi-Patch subnet and a Layout-Aware subnet. We further construct an aggregation layer to effectively combine the hybrid features from these two subnets. Extensive experiments on the large-scale aesthetics assessment benchmark (AVA) demonstrate significant performance improvement over the state-of-the-art in photo aesthetic assessment.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099567&isnumber=8099483

78. Teaching Compositionality to CNNs

Abstract: Convolutional neural networks (CNNs) have shown great success in computer vision, approaching human-level performance when trained for specific tasks via application-specific loss functions. In this paper, we propose a method for augmenting and training CNNs so that their learned features are compositional. It encourages networks to form representations that disentangle objects from their surroundings and from each other, thereby promoting better generalization. Our method is agnostic to the specific details of the underlying CNN to which it is applied and can in principle be used with any CNN. As we show in our experiments, the learned representations lead to feature activations that are more localized and improve performance over non-compositional baselines in object recognition tasks.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099568&isnumber=8099483

79. Using Ranking-CNN for Age Estimation

Abstract: Human age is considered an important biometric trait for human identification or search. Recent research shows that the aging features deeply learned from large-scale data lead to significant performance improvement on facial image-based age estimation. However, age-related ordinal information is totally ignored in these approaches. In this paper, we propose a novel Convolutional Neural Network (CNN)-based framework, ranking-CNN, for age estimation. Ranking-CNN contains a series of basic CNNs, each of which is trained with ordinal age labels. Then, their binary outputs are aggregated for the final age prediction. We theoretically obtain a much tighter error bound for ranking-based age estimation. Moreover, we rigorously prove that ranking-CNN is more likely to get smaller estimation errors when compared with multi-class classification approaches. Through extensive experiments, we show that statistically, ranking-CNN significantly outperforms other state-of-the-art age estimation models on benchmark datasets.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099569&isnumber=8099483

80. Accurate Single Stage Detector Using Recurrent Rolling Convolution

Abstract: Most of the recent successful methods in accurate object detection and localization used some variants of R-CNN style two stage Convolutional Neural Networks (CNN) where plausible regions were proposed in the first stage then followed by a second stage for decision refinement. Despite the simplicity of training and the efficiency in deployment, the single stage detection methods have not been as competitive when evaluated in benchmarks consider mAP for high IoU thresholds. In this paper, we proposed a novel single stage end-to-end trainable object detection network to overcome this limitation. We achieved this by introducing Recurrent Rolling Convolution (RRC) architecture over multi-scale feature maps to construct object classifiers and bounding box regressors which are deep in context. We evaluated our method in the challenging KITTI dataset which measures methods under IoU threshold of 0.7. We showed that with RRC, a single reduced VGG-16 based model already significantly outperformed all the previously published results. At the time this paper was written our models ranked the first in KITTI car detection (the hard level), the first in cyclist detection and the second in pedestrian detection. These results were not reached by the previous single stage methods. The code is publicly available.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099570&isnumber=8099483

81. A Compact DNN: Approaching GoogLeNet-Level Accuracy of Classification and Domain Adaptation

Abstract: Recently, DNN model compression based on network architecture design, e.g., SqueezeNet, attracted a lot attention. No accuracy drop on image classification is observed on these extremely compact networks, compared to well-known models. An emerging question, however, is whether these model compression techniques hurt DNNs learning ability other than classifying images on a single dataset. Our preliminary experiment shows that these compression methods could degrade domain adaptation (DA) ability, though the classification performance is preserved. Therefore, we propose a new compact network architecture and unsupervised DA method in this paper. The DNN is built on a new basic module Conv-M which provides more diverse feature extractors without significantly increasing parameters. The unified framework of our DA method will simultaneously learn invariance across domains, reduce divergence of feature representations, and adapt label prediction. Our DNN has 4.1M parameters, which is only 6.7% of AlexNet or 59% of GoogLeNet. Experiments show that our DNN obtains GoogLeNet-level accuracy both on classification and DA, and our DA method slightly outperforms previous competitive ones. Put all together, our DA strategy based on our DNN achieves state-of-the-art on sixteen of total eighteen DA tasks on popular Office-31 and Office-Caltech datasets.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099571&isnumber=8099483

82. The Impact of Typicality for Informative Representative Selection

Abstract: In computer vision, selection of the most informative samples from a huge pool of training data in order to learn a good recognition model is an active research problem. Furthermore, it is also useful to reduce the annotation cost, as it is time consuming to annotate unlabeled samples. In this paper, motivated by the theories in data compression, we propose a novel sample selection strategy which exploits the concept of typicality from the domain of information theory. Typicality is a simple and powerful technique which can be applied to compress the training data to learn a good classification model. In this work, typicality is used to identify a subset of the most informative samples for labeling, which is then used to update the model using active learning. The proposed model can take advantage of the inter-relationships between data samples. Our approach leads to a significant reduction of manual labeling cost while achieving similar or better recognition performance compared to a model trained with entire training set. This is demonstrated through rigorous experimentation on five datasets.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099572&isnumber=8099483

83. Infinite Variational Autoencoder for Semi-Supervised Learning

Abstract: This paper presents an infinite variational autoencoder (VAE) whose capacity adapts to suit the input data. This is achieved using a mixture model where the mixing coefficients are modeled by a Dirichlet process, allowing us to integrate over the coefficients when performing inference. Critically, this then allows us to automatically vary the number of autoencoders in the mixture based on the data. Experiments show the flexibility of our method, particularly for semi-supervised learning, where only a small number of training samples are available.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099573&isnumber=8099483

84. SurfNet: Generating 3D Shape Surfaces Using Deep Residual Networks

Abstract: 3D shape models are naturally parameterized using vertices and faces, i.e., composed of polygons forming a surface. However, current 3D learning paradigms for predictive and generative tasks using convolutional neural networks focus on a voxelized representation of the object. Lifting convolution operators from the traditional 2D to 3D results in high computational overhead with little additional benefit as most of the geometry information is contained on the surface boundary. Here we study the problem of directly generating the 3D shape surface of rigid and non-rigid shapes using deep convolutional neural networks. We develop a procedure to create consistent ‘geometry images’ representing the shape surface of a category of 3D objects. We then use this consistent representation for category-specific shape surface generation from a parametric representation or an image by developing novel extensions of deep residual networks for the task of geometry image generation. Our experiments indicate that our network learns a meaningful representation of shape surfaces allowing it to interpolate between shape orientations and poses, invent new shape surfaces and reconstruct 3D shape surfaces from previously unseen images. Our code is available at https://github.com/sinhayan/surfnet.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099574&isnumber=8099483

85. Intrinsic Grassmann Averages for Online Linear and Robust Subspace Learning

Abstract: Principal Component Analysis (PCA) is a fundamental method for estimating a linear subspace approximation to high-dimensional data. Many algorithms exist in literature to achieve a statistically robust version of PCA called RPCA. In this paper, we present a geometric framework for computing the principal linear subspaces in both situations that amounts to computing the intrinsic average on the space of all subspaces (the Grassmann manifold). Points on this manifold are defined as the subspaces spanned by K-tuples of observations. We show that the intrinsic Grassmann average of these subspaces coincide with the principal components of the observations when they are drawn from a Gaussian distribution. Similar results are also shown to hold for the RPCA. Further, we propose an efficient online algorithm to do subspace averaging which is of linear complexity in terms of number of samples and has a linear convergence rate. When the data has outliers, our proposed online robust subspace averaging algorithm shows significant performance (accuracy and computation time) gain over a recently published RPCA methods with publicly accessible code. We have demonstrated competitive performance of our proposed online subspace algorithm method on one synthetic and two real data sets. Experimental results depicting stability of our proposed method are also presented. Furthermore, on two real outlier corrupted datasets, we present comparison experiments showing lower reconstruction error using our online RPCA algorithm. In terms of reconstruction error and time required, both our algorithms outperform the competition.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099575&isnumber=8099483

86. Variational Bayesian Multiple Instance Learning with Gaussian Processes

Abstract: Gaussian Processes (GPs) are effective Bayesian predictors. We here show for the first time that instance labels of a GP classifier can be inferred in the multiple instance learning (MIL) setting using variational Bayes. We achieve this via a new construction of the bag likelihood that assumes a large value if the instance predictions obey the MIL constraints and a small value otherwise. This construction lets us derive the update rules for the variational parameters analytically, assuring both scalable learning and fast convergence. We observe this model to improve the state of the art in instance label prediction from bag-level supervision in the 20 Newsgroups benchmark, as well as in Barretts cancer tumor localization from histopathology tissue microarray images. Furthermore, we introduce a novel pipeline for weakly supervised object detection naturally complemented with our model, which improves the state of the art on the PASCAL VOC 2007 and 2012 data sets. Last but not least, the performance of our model can be further boosted up using mixed supervision: a combination of weak (bag) and strong (instance) labels.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099576&isnumber=8099483

87. Temporal Attention-Gated Model for Robust Sequence Classification

Abstract: Typical techniques for sequence classification are designed for well-segmented sequences which have been edited to remove noisy or irrelevant parts. Therefore, such methods cannot be easily applied on noisy sequences expected in real-world applications. In this paper, we present the Temporal Attention-Gated Model (TAGM) which integrates ideas from attention models and gated recurrent networks to better deal with noisy or unsegmented sequences. Specifically, we extend the concept of attention model to measure the relevance of each observation (time step) of a sequence. We then use a novel gated recurrent network to learn the hidden representation for the final prediction. An important advantage of our approach is interpretability since the temporal attention weights provide a meaningful value for the salience of each time step in the sequence. We demonstrate the merits of our TAGM approach, both for prediction accuracy and interpretability, on three different tasks: spoken digit recognition, text-based sentiment analysis and visual event recognition.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099577&isnumber=8099483

88. Non-uniform Subset Selection for Active Learning in Structured Data

Abstract: Several works have shown that relationships between data points (i.e., context) in structured data can be exploited to obtain better recognition performance. In this paper, we explore a different, but related, problem: how can these inter-relationships be used to efficiently learn and continuously update a recognition model, with minimal human labeling effort. Towards this goal, we propose an active learning framework to select an optimal subset of data points for manual labeling by exploiting the relationships between them. We construct a graph from the unlabeled data to represent the underlying structure, such that each node represents a data point, and edges represent the inter-relationships between them. Thereafter, considering the flow of beliefs in this graph, we choose those samples for labeling which minimize the joint entropy of the nodes of the graph. This results in significant reduction in manual labeling effort without compromising recognition performance. Our method chooses non-uniform number of samples from each batch of streaming data depending on its information content. Also, the submodular property of our objective function makes it computationally efficient to optimize. The proposed framework is demonstrated in various applications, including document analysis, scene-object recognition, and activity recognition.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099578&isnumber=8099483

89. Colorization as a Proxy Task for Visual Understanding

Abstract: We investigate and improve self-supervision as a drop-in replacement for ImageNet pretraining, focusing on automatic colorization as the proxy task. Self-supervised training has been shown to be more promising for utilizing unlabeled data than other, traditional unsupervised learning methods. We build on this success and evaluate the ability of our self-supervised network in several contexts. On VOC segmentation and classification tasks, we present results that are state-of-the-art among methods not using ImageNet labels for pretraining representations. Moreover, we present the first in-depth analysis of self-supervision via colorization, concluding that formulation of the loss, training details and network architecture play important roles in its effectiveness. This investigation is further expanded by revisiting the ImageNet pretraining paradigm, asking questions such as: How much training data is needed? How many labels are needed? How much do features change when fine-tuned? We relate these questions back to self-supervision by showing that colorization provides a similarly powerful supervisory signal as various flavors of ImageNet pretraining.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099579&isnumber=8099483

90. Shading Annotations in the Wild

Abstract: Understanding shading effects in images is critical for a variety of vision and graphics problems, including intrinsic image decomposition, shadow removal, image relighting, and inverse rendering. As is the case with other vision tasks, machine learning is a promising approach to understanding shading - but there is little ground truth shading data available for real-world images. We introduce Shading Annotations in the Wild (SAW), a new large-scale, public dataset of shading annotations in indoor scenes, comprised of multiple forms of shading judgments obtained via crowdsourcing, along with shading annotations automatically generated from RGB-D imagery. We use this data to train a convolutional neural network to predict per-pixel shading information in an image. We demonstrate the value of our data and network in an application to intrinsic images, where we can reduce decomposition artifacts produced by existing algorithms. Our database is available at http://opensurfaces.cs.cornell.edu/saw.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099580&isnumber=8099483

91. LCNN: Lookup-Based Convolutional Neural Network

Abstract: Porting state of the art deep learning algorithms to resource constrained compute platforms (e.g. VR, AR, wearables) is extremely challenging. We propose a fast, compact, and accurate model for convolutional neural networks that enables efficient learning and inference. We introduce LCNN, a lookup-based convolutional neural network that encodes convolutions by few lookups to a dictionary that is trained to cover the space of weights in CNNs. Training LCNN involves jointly learning a dictionary and a small set of linear combinations. The size of the dictionary naturally traces a spectrum of trade-offs between efficiency and accuracy. Our experimental results on ImageNet challenge show that LCNN can offer 3.2x speedup while achieving 55.1% top-1 accuracy using AlexNet architecture. Our fastest LCNN offers 37.6x speed up over AlexNet while maintaining 44.3% top-1 accuracy. LCNN not only offers dramatic speed ups at inference, but it also enables efficient training. In this paper, we show the benefits of LCNN in few-shot learning and few-iteration learning, two crucial aspects of on-device training of deep learning models.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099581&isnumber=8099483

92. Physics Inspired Optimization on Semantic Transfer Features: An Alternative Method for Room Layout Estimation

Abstract: In this paper, we propose an alternative method to estimate room layouts of cluttered indoor scenes. This method enjoys the benefits of two novel techniques. The first one is semantic transfer (ST), which is: (1) a formulation to integrate the relationship between scene clutter and room layout into convolutional neural networks, (2) an architecture that can be end-to-end trained, (3) a practical strategy to initialize weights for very deep networks under unbalanced training data distribution. ST allows us to extract highly robust features under various circumstances, and in order to address the computation redundance hidden in these features we develop a principled and efficient inference scheme named physics inspired optimization (PIO). PIOs basic idea is to formulate some phenomena observed in ST features into mechanics concepts. Evaluations on public datasets LSUN and Hedau show that the proposed method is more accurate than state-of-the-art methods.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099582&isnumber=8099483

93. Pixelwise Instance Segmentation with a Dynamically Instantiated Network

Abstract: Semantic segmentation and object detection research have recently achieved rapid progress. However, the former task has no notion of different instances of the same object, and the latter operates at a coarse, bounding-box level. We propose an Instance Segmentation system that produces a segmentation map where each pixel is assigned an object class and instance identity label. Most approaches adapt object detectors to produce segments instead of boxes. In contrast, our method is based on an initial semantic segmentation module, which feeds into an instance subnetwork. This subnetwork uses the initial category-level segmentation, along with cues from the output of an object detector, within an end-to-end CRF to predict instances. This part of our model is dynamically instantiated to produce a variable number of instances per image. Our end-to-end approach requires no post-processing and considers the image holistically, instead of processing independent proposals. Therefore, unlike some related work, a pixel cannot belong to multiple instances. Furthermore, far more precise segmentations are achieved, as shown by our substantial improvements at high APr thresholds.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099583&isnumber=8099483

94. Object Detection in Videos with Tubelet Proposal Networks

Abstract: Object detection in videos has drawn increasing attention recently with the introduction of the large-scale ImageNet VID dataset. Different from object detection in static images, temporal information in videos is vital for object detection. To fully utilize temporal information, state-of-the-art methods [15, 14] are based on spatiotemporal tubelets, which are essentially sequences of associated bounding boxes across time. However, the existing methods have major limitations in generating tubelets in terms of quality and efficiency. Motion-based [14] methods are able to obtain dense tubelets efficiently, but the lengths are generally only several frames, which is not optimal for incorporating long-term temporal information. Appearance-based [15] methods, usually involving generic object tracking, could generate long tubelets, but are usually computationally expensive. In this work, we propose a framework for object detection in videos, which consists of a novel tubelet proposal network to efficiently generate spatiotemporal proposals, and a Long Short-term Memory (LSTM) network that incorporates temporal information from tubelet proposals for achieving high object detection accuracy in videos. Experiments on the large-scale ImageNet VID dataset demonstrate the effectiveness of the proposed framework for object detection in videos.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099584&isnumber=8099483

95. AMVH: Asymmetric Multi-Valued hashing

Abstract: Most existing hashing methods resort to binary codes for similarity search, owing to the high efficiency of computation and storage. However, binary codes lack enough capability in similarity preservation, resulting in less desirable performance. To address this issue, we propose an asymmetric multi-valued hashing method supported by two different non-binary embeddings. (1) A real-valued embedding is used for representing the newly-coming query. (2) A multi-integer-embedding is employed for compressing the whole database, which is modeled by binary sparse representation with fixed sparsity. With these two non-binary embeddings, the similarities between data points can be preserved precisely. To perform meaningful asymmetric similarity computation for efficient semantic search, these embeddings are jointly learnt by preserving the label-based similarity. Technically, this results in a mixed integer programming problem, which is efficiently solved by alternative optimization. Extensive experiments on three multilabel datasets demonstrate that our approach not only outperforms the existing binary hashing methods in search accuracy, but also retains their query and storage efficiency.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099585&isnumber=8099483

96. Spindle Net: Person Re-identification with Human Body Region Guided Feature Decomposition and Fusion

Abstract: Person re-identification (ReID) is an important task in video surveillance and has various applications. It is non-trivial due to complex background clutters, varying illumination conditions, and uncontrollable camera settings. Moreover, the person body misalignment caused by detectors or pose variations is sometimes too severe for feature matching across images. In this study, we propose a novel Convolutional Neural Network (CNN), called Spindle Net, based on human body region guided multi-stage feature decomposition and tree-structured competitive feature fusion. It is the first time human body structure information is considered in a CNN framework to facilitate feature learning. The proposed Spindle Net brings unique advantages: 1) it separately captures semantic features from different body regions thus the macro-and micro-body features can be well aligned across images, 2) the learned region features from different semantic regions are merged with a competitive scheme and discriminative features can be well preserved. State of the art performance can be achieved on multiple datasets by large margins. We further demonstrate the robustness and effectiveness of the proposed Spindle Net on our proposed dataset SenseReID without fine-tuning.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099586&isnumber=8099483

97. Deep Visual-Semantic Quantization for Efficient Image Retrieval

Abstract: Compact coding has been widely applied to approximate nearest neighbor search for large-scale image retrieval, due to its computation efficiency and retrieval quality. This paper presents a compact coding solution with a focus on the deep learning to quantization approach, which improves retrieval quality by end-to-end representation learning and compact encoding and has already shown the superior performance over the hashing solutions for similarity retrieval. We propose Deep Visual-Semantic Quantization (DVSQ), which is the first approach to learning deep quantization models from labeled image data as well as the semantic information underlying general text domains. The main contribution lies in jointly learning deep visual-semantic embeddings and visual-semantic quantizers using carefully-designed hybrid networks and well-specified loss functions. DVSQ enables efficient and effective image retrieval by supporting maximum inner-product search, which is computed based on learned codebooks with fast distance table lookup. Comprehensive empirical evidence shows that DVSQ can generate compact binary codes and yield state-of-the-art similarity retrieval performance on standard benchmarks.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099587&isnumber=8099483

98. Efficient Diffusion on Region Manifolds: Recovering Small Objects with Compact CNN Representations

Abstract: Query expansion is a popular method to improve the quality of image retrieval with both conventional and CNN representations. It has been so far limited to global image similarity. This work focuses on diffusion, a mechanism that captures the image manifold in the feature space. An efficient off-line stage allows optional reduction in the number of stored regions. In the on-line stage, the proposed handling of unseen queries in the indexing stage removes additional computation to adjust the precomputed data. We perform diffusion through a sparse linear system solver, yielding practical query times well below one second. Experimentally, we observe a significant boost in performance of image retrieval with compact CNN descriptors on standard benchmarks, especially when the query object covers only a small part of the image. Small objects have been a common failure case of CNN-based retrieval.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099588&isnumber=8099483

99. Feature Pyramid Networks for Object Detection

Abstract: Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But pyramid representations have been avoided in recent object detectors that are based on deep convolutional networks, partially because they are slow to compute and memory intensive. In this paper, we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A top-down architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using a basic Faster R-CNN system, our method achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 5 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection. Code will be made publicly available.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099589&isnumber=8099483

100. Mind the Class Weight Bias: Weighted Maximum Mean Discrepancy for Unsupervised Domain Adaptation

Abstract: In domain adaptation, maximum mean discrepancy (MMD) has been widely adopted as a discrepancy metric between the distributions of source and target domains. However, existing MMD-based domain adaptation methods generally ignore the changes of class prior distributions, i.e., class weight bias across domains. This remains an open problem but ubiquitous for domain adaptation, which can be caused by changes in sample selection criteria and application scenarios. We show that MMD cannot account for class weight bias and results in degraded domain adaptation performance. To address this issue, a weighted MMD model is proposed in this paper. Specifically, we introduce class-specific auxiliary weights into the original MMD for exploiting the class prior probability on source and target domains, whose challenge lies in the fact that the class label in target domain is unavailable. To account for it, our proposed weighted MMD model is defined by introducing an auxiliary weight for each class in the source domain, and a classification EM algorithm is suggested by alternating between assigning the pseudo-labels, estimating auxiliary weights and updating model parameters. Extensive experiments demonstrate the superiority of our weighted MMD over conventional MMD for domain adaptation.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099590&isnumber=8099483

101. StyleNet: Generating Attractive Visual Captions with Styles

Abstract: We propose a novel framework named StyleNet to address the task of generating attractive captions for images and videos with different styles. To this end, we devise a novel model component, named factored LSTM, which automatically distills the style factors in the monolingual text corpus. Then at runtime, we can explicitly control the style in the caption generation process so as to produce attractive visual captions with the desired style. Our approach achieves this goal by leveraging two sets of data: 1) factual image/video-caption paired data, and 2) stylized monolingual text data (e.g., romantic and humorous sentences). We show experimentally that StyleNet outperforms existing approaches for generating visual captions with different styles, measured in both automatic and human evaluation metrics on the newly collected FlickrStyle10K image caption dataset, which contains 10K Flickr images with corresponding humorous and romantic captions.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099591&isnumber=8099483

102. Fine-Grained Recognition of Thousands of Object Categories with Single-Example Training

Abstract: We approach the problem of fast detection and recognition of a large number (thousands) of object categories while training on a very limited amount of examples, usually one per category. Examples of this task include: (i) detection of retail products, where we have only one studio image of each product available for training, (ii) detection of brand logos, and (iii) detection of 3D objects and their respective poses within a static 2D image, where only a sparse subset of (partial) object views is available for training, with a single example for each view. Building a detector based on so few examples presents a significant challenge for the current top-performing (deep) learning based techniques, which require large amounts of data to train. Our approach for this task is based on a non-parametric probabilistic model for initial detection, CNN-based refinement and temporal integration where applicable. We successfully demonstrate its usefulness in a variety of experiments on both existing and our own benchmarks achieving state-of-the-art performance.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099592&isnumber=8099483

103. Improving Interpretability of Deep Neural Networks with Semantic Information

Abstract: Interpretability of deep neural networks (DNNs) is essential since it enables users to understand the overall strengths and weaknesses of the models, conveys an understanding of how the models will behave in the future, and how to diagnose and correct potential problems. However, it is challenging to reason about what a DNN actually does due to its opaque or black-box nature. To address this issue, we propose a novel technique to improve the interpretability of DNNs by leveraging the rich semantic information embedded in human descriptions. By concentrating on the video captioning task, we first extract a set of semantically meaningful topics from the human descriptions that cover a wide range of visual concepts, and integrate them into the model with an interpretive loss. We then propose a prediction difference maximization algorithm to interpret the learned features of each neuron. Experimental results demonstrate its effectiveness in video captioning using the interpretable features, which can also be transferred to video action recognition. By clearly understanding the learned features, users can easily revise false predictions via a human-in-the-loop procedure.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099593&isnumber=8099483

104. Video Captioning with Transferred Semantic Attributes

Abstract: Automatically generating natural language descriptions of videos plays a fundamental challenge for computer vision community. Most recent progress in this problem has been achieved through employing 2-D and/or 3-D Convolutional Neural Networks (CNNs) to encode video content and Recurrent Neural Networks (RNNs) to decode a sentence. In this paper, we present Long Short-Term Memory with Transferred Semantic Attributes (LSTM-TSA) - a novel deep architecture that incorporates the transferred semantic attributes learnt from images and videos into the CNN plus RNN framework, by training them in an end-to-end manner. The design of LSTM-TSA is highly inspired by the facts that 1) semantic attributes play a significant contribution to captioning, and 2) images and videos carry complementary semantics and thus can reinforce each other for captioning. To boost video captioning, we propose a novel transfer unit to model the mutually correlated attributes learnt from images and videos. Extensive experiments are conducted on three public datasets, i.e., MSVD, M-VAD and MPIIMD. Our proposed LSTM-TSA achieves to-date the best published performance in sentence generation on MSVD: 52.8% and 74.0% in terms of BLEU@4 and CIDEr-D. Superior results are also reported on M-VAD and MPII-MD when compared to state-of-the-art methods.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099594&isnumber=8099483

105. Fast Boosting Based Detection Using Scale Invariant Multimodal Multiresolution Filtered Features

Abstract: In this paper we propose a novel boosting-based sliding window solution for object detection which can keep up with the precision of the state-of-the art deep learning approaches, while being 10 to 100 times faster. The solution takes advantage of multisensorial perception and exploits information from color, motion and depth. We introduce multimodal multiresolution filtering of signal intensity, gradient magnitude and orientation channels, in order to capture structure at multiple scales and orientations. To achieve scale invariant classification features, we analyze the effect of scale change on features for different filter types and propose a correction scheme. To improve recognition we incorporate 2D and 3D context by generating spatial, geometric and symmetrical channels. Finally, we evaluate the proposed solution on multiple benchmarks for the detection of pedestrians, cars and bicyclists. We achieve competitive results at over 25 frames per second.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099595&isnumber=8099483

106. Temporal Convolutional Networks for Action Segmentation and Detection

Abstract: The ability to identify and temporally segment fine-grained human actions throughout a video is crucial for robotics, surveillance, education, and beyond. Typical approaches decouple this problem by first extracting local spatiotemporal features from video frames and then feeding them into a temporal classifier that captures high-level temporal patterns. We describe a class of temporal models, which we call Temporal Convolutional Networks (TCNs), that use a hierarchy of temporal convolutions to perform fine-grained action segmentation or detection. Our Encoder-Decoder TCN uses pooling and upsampling to efficiently capture long-range temporal patterns whereas our Dilated TCN uses dilated convolutions. We show that TCNs are capable of capturing action compositions, segment durations, and long-range dependencies, and are over a magnitude faster to train than competing LSTM-based Recurrent Neural Networks. We apply these models to three challenging fine-grained datasets and show large improvements over the state of the art.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099596&isnumber=8099483

107. Surveillance Video Parsing with Single Frame Supervision

Abstract: Surveillance video parsing, which segments the video frames into several labels, e.g., face, pants, left-leg, has wide applications [41, 8]. However, pixel-wisely annotating all frames is tedious and inefficient. In this paper, we develop a Single frame Video Parsing (SVP) method which requires only one labeled frame per video in training stage. To parse one particular frame, the video segment preceding the frame is jointly considered. SVP (i) roughly parses the frames within the video segment, (ii) estimates the optical flow between frames and (iii) fuses the rough parsing results warped by optical flow to produce the refined parsing result. The three components of SVP, namely frame parsing, optical flow estimation and temporal fusion are integrated in an end-to-end manner. Experimental results on two surveillance video datasets show the superiority of SVP over state-of-the-arts. The collected video parsing datasets can be downloaded via http://liusi-group.com/projects/SVP for the further studies.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099597&isnumber=8099483

108. Weakly Supervised Actor-Action Segmentation via Robust Multi-task Ranking

Abstract: Fine-grained activity understanding in videos has attracted considerable recent attention with a shift from action classification to detailed actor and action understanding that provides compelling results for perceptual needs of cutting-edge autonomous systems. However, current methods for detailed understanding of actor and action have significant limitations: they require large amounts of finely labeled data, and they fail to capture any internal relationship among actors and actions. To address these issues, in this paper, we propose a novel, robust multi-task ranking model for weakly supervised actor-action segmentation where only video-level tags are given for training samples. Our model is able to share useful information among different actors and actions while learning a ranking matrix to select representative supervoxels for actors and actions respectively. Final segmentation results are generated by a conditional random field that considers various ranking scores for different video parts. Extensive experimental results on the Actor-Action Dataset (A2D) demonstrate that the proposed approach outperforms the state-of-the-art weakly supervised methods and performs as well as the top-performing fully supervised method.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099598&isnumber=8099483

109. Unsupervised Visual-Linguistic Reference Resolution in Instructional Videos

Abstract: We propose an unsupervised method for reference resolution in instructional videos, where the goal is to temporally link an entity (e.g., dressing) to the action (e.g., mix yogurt) that produced it. The key challenge is the inevitable visual-linguistic ambiguities arising from the changes in both visual appearance and referring expression of an entity in the video. This challenge is amplified by the fact that we aim to resolve references with no supervision. We address these challenges by learning a joint visual-linguistic model, where linguistic cues can help resolve visual ambiguities and vice versa. We verify our approach by learning our model unsupervisedly using more than two thousand unstructured cooking videos from YouTube, and show that our visual-linguistic model can substantially improve upon state-of-the-art linguistic only model on reference resolution in instructional videos.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099599&isnumber=8099483

110. Zero-Shot Action Recognition with Error-Correcting Output Codes

Abstract: Recently, zero-shot action recognition (ZSAR) has emerged with the explosive growth of action categories. In this paper, we explore ZSAR from a novel perspective by adopting the Error-Correcting Output Codes (dubbed ZSECOC). Our ZSECOC equips the conventional ECOC with the additional capability of ZSAR, by addressing the domain shift problem. In particular, we learn discriminative ZSECOC for seen categories from both category-level semantics and intrinsic data structures. This procedure deals with domain shift implicitly by transferring the well-established correlations among seen categories to unseen ones. Moreover, a simple semantic transfer strategy is developed for explicitly transforming the learned embeddings of seen categories to better fit the underlying structure of unseen categories. As a consequence, our ZSECOC inherits the promising characteristics from ECOC as well as overcomes domain shift, making it more discriminative for ZSAR. We systematically evaluate ZSECOC on three realistic action benchmarks, i.e. Olympic Sports, HMDB51 and UCF101. The experimental results clearly show the superiority of ZSECOC over the state-of-the-art methods.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099600&isnumber=8099483

111. Enhancing Video Summarization via Vision-Language Embedding

Abstract: This paper addresses video summarization, or the problem of distilling a raw video into a shorter form while still capturing the original story. We show that visual representations supervised by freeform language make a good fit for this application by extending a recent submodular summarization approach [9] with representativeness and interestingness objectives computed on features from a joint vision-language embedding space. We perform an evaluation on two diverse datasets, UT Egocentric [18] and TV Episodes [45], and show that our new objectives give improved summarization ability compared to standard visual features alone. Our experiments also show that the vision-language embedding need not be trained on domainspecific data, but can be learned from standard still image vision-language datasets and transferred to video. A further benefit of our model is the ability to guide a summary using freeform text input at test time, allowing user customization.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099601&isnumber=8099483

112. Synthesizing Dynamic Patterns by Spatial-Temporal Generative ConvNet

Abstract: Video sequences contain rich dynamic patterns, such as dynamic texture patterns that exhibit stationarity in the temporal domain, and action patterns that are non-stationary in either spatial or temporal domain. We show that a spatial-temporal generative ConvNet can be used to model and synthesize dynamic patterns. The model defines a probability distribution on the video sequence, and the log probability is defined by a spatial-temporal ConvNet that consists of multiple layers of spatial-temporal filters to capture spatial-temporal patterns of different scales. The model can be learned from the training video sequences by an analysis by synthesis learning algorithm that iterates the following two steps. Step 1 synthesizes video sequences from the currently learned model. Step 2 then updates the model parameters based on the difference between the synthesized video sequences and the observed training sequences. We show that the learning algorithm can synthesize realistic dynamic patterns.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099602&isnumber=8099483

113. Context-Aware Captions from Context-Agnostic Supervision

Abstract: We introduce an inference technique to produce discriminative context-aware image captions (captions that describe differences between images or visual concepts) using only generic context-agnostic training data (captions that describe a concept or an image in isolation). For example, given images and captions of siamese cat and tiger cat, we generate language that describes the siamese cat in a way that distinguishes it from tiger cat. Our key novelty is that we show how to do joint inference over a language model that is context-agnostic and a listener which distinguishes closely-related concepts. We first apply our technique to a justification task, namely to describe why an image contains a particular fine-grained category as opposed to another closely-related category of the CUB-200-2011 dataset. We then study discriminative image captioning to generate language that uniquely refers to one of two semantically-similar images in the COCO dataset. Evaluations with discriminative ground truth for justification and human studies for discriminative image captioning reveal that our approach outperforms baseline generative and speaker-listener approaches for discrimination.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099603&isnumber=8099483

114. Visual Dialog

Abstract: We introduce the task of Visual Dialog, which requires an AI agent to hold a meaningful dialog with humans in natural, conversational language about visual content. Specifically, given an image, a dialog history, and a question about the image, the agent has to ground the question in image, infer context from history, and answer the question accurately. Visual Dialog is disentangled enough from a specific downstream task so as to serve as a general test of machine intelligence, while being grounded in vision enough to allow objective evaluation of individual responses and benchmark progress. We develop a novel two-person chat data-collection protocol to curate a large-scale Visual Dialog dataset (VisDial). VisDial contains 1 dialog (10 question-answer pairs) on ~140k images from the COCO dataset, with a total of ~1.4M dialog question-answer pairs. We introduce a family of neural encoder-decoder models for Visual Dialog with 3 encoders (Late Fusion, Hierarchical Recurrent Encoder and Memory Network) and 2 decoders (generative and discriminative), which outperform a number of sophisticated baselines. We propose a retrieval-based evaluation protocol for Visual Dialog where the AI agent is asked to sort a set of candidate answers and evaluated on metrics such as mean-reciprocal-rank of human response. We quantify gap between machine and human performance on the Visual Dialog task via human studies. Our dataset, code, and trained models will be released publicly at https://visualdialog.org. Putting it all together, we demonstrate the first visual chatbot!.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099604&isnumber=8099483

115. Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries

Abstract: Associating image regions with text queries has been recently explored as a new way to bridge visual and linguistic representations. A few pioneering approaches have been proposed based on recurrent neural language models trained generatively (e.g., generating captions), but achieving somewhat limited localization accuracy. To better address natural-language-based visual entity localization, we propose a discriminative approach. We formulate a discriminative bimodal neural network (DBNet), which can be trained by a classifier with extensive use of negative samples. Our training objective encourages better localization on single images, incorporates text phrases in a broad range, and properly pairs image regions with text phrases into positive and negative examples. Experiments on the Visual Genome dataset demonstrate the proposed DBNet significantly outperforms previous state-of-the-art methods both for localization on single images and for detection on multiple images. We we also establish an evaluation protocol for natural-language visual detection. Code is available at: http://ytzhang.net/projects/dbnet.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099605&isnumber=8099483

116. Automatic Understanding of Image and Video Advertisements

Abstract: There is more to images than their objective physical content: for example, advertisements are created to persuade a viewer to take a certain action. We propose the novel problem of automatic advertisement understanding. To enable research on this problem, we create two datasets: an image dataset of 64,832 image ads, and a video dataset of 3,477 ads. Our data contains rich annotations encompassing the topic and sentiment of the ads, questions and answers describing what actions the viewer is prompted to take and the reasoning that the ad presents to persuade the viewer (What should I do according to this ad, and why should I do it?), and symbolic references ads make (e.g. a dove symbolizes peace). We also analyze the most common persuasive strategies ads use, and the capabilities that computer vision systems should have to understand these strategies. We present baseline classification results for several prediction tasks, including automatically answering questions about the messages of the ads.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099606&isnumber=8099483

117. Discover and Learn New Objects from Documentaries

Abstract: Despite the remarkable progress in recent years, detecting objects in a new context remains a challenging task. Detectors learned from a public dataset can only work with a fixed list of categories, while training from scratch usually requires a large amount of training data with detailed annotations. This work aims to explore a novel approach - learning object detectors from documentary films in a weakly supervised manner. This is inspired by the observation that documentaries often provide dedicated exposition of certain object categories, where visual presentations are aligned with subtitles. We believe that object detectors can be learned from such a rich source of information. Towards this goal, we develop a joint probabilistic framework, where individual pieces of information, including video frames and subtitles, are brought together via both visual and linguistic links. On top of this formulation, we further derive a weakly supervised learning algorithm, where object model learning and training set mining are unified in an optimization procedure. Experimental results on a real world dataset demonstrate that this is an effective approach to learning new object detectors.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099607&isnumber=8099483

118. Spatial-Semantic Image Search by Visual Feature Synthesis

Abstract: The performance of image retrieval has been improved tremendously in recent years through the use of deep feature representations. Most existing methods, however, aim to retrieve images that are visually similar or semantically relevant to the query, irrespective of spatial configuration. In this paper, we develop a spatial-semantic image search technology that enables users to search for images with both semantic and spatial constraints by manipulating concept text-boxes on a 2D query canvas. We train a convolutional neural network to synthesize appropriate visual features that captures the spatial-semantic constraints from the user canvas query. We directly optimize the retrieval performance of the visual features when training our deep neural network. These visual features then are used to retrieve images that are both spatially and semantically relevant to the user query. The experiments on large-scale datasets such as MS-COCO and Visual Genome show that our method outperforms other baseline and state-of-the-art methods in spatial-semantic image search.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099608&isnumber=8099483

119. Fully-Adaptive Feature Sharing in Multi-Task Networks with Applications in Person Attribute Classification

Abstract: Multi-task learning aims to improve generalization performance of multiple prediction tasks by appropriately sharing relevant information across them. In the context of deep neural networks, this idea is often realized by hand-designed network architectures with layers that are shared across tasks and branches that encode task-specific features. However, the space of possible multi-task deep architectures is combinatorially large and often the final architecture is arrived at by manual exploration of this space, which can be both error-prone and tedious. We propose an automatic approach for designing compact multi-task deep learning architectures. Our approach starts with a thin multi-layer network and dynamically widens it in a greedy manner during training. By doing so iteratively, it creates a tree-like deep architecture, on which similar tasks reside in the same branch until at the top layers. Evaluation on person attributes classification tasks involving facial and clothing attributes suggests that the models produced by the proposed method are fast, compact and can closely match or exceed the state-of-the-art accuracy from strong baselines by much more expensive models.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099609&isnumber=8099483

120. Semantic Compositional Networks for Visual Captioning

Abstract: A Semantic Compositional Network (SCN) is developed for image captioning, in which semantic concepts (i.e., tags) are detected from the image, and the probability of each tag is used to compose the parameters in a long short-term memory (LSTM) network. The SCN extends each weight matrix of the LSTM to an ensemble of tag-dependent weight matrices. The degree to which each member of the ensemble is used to generate an image caption is tied to the image-dependent probability of the corresponding tag. In addition to captioning images, we also extend the SCN to generate captions for video clips. We qualitatively analyze semantic composition in SCNs, and quantitatively evaluate the algorithm on three benchmark datasets: COCO, Flickr30k, and Youtube2Text. Experimental results show that the proposed method significantly outperforms prior state-of-the-art approaches, across multiple evaluation metrics.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099610&isnumber=8099483

121. Deep Reinforcement Learning-Based Image Captioning with Embedding Reward

Abstract: Image captioning is a challenging problem owing to the complexity in understanding the image content and diverse ways of describing it in natural language. Recent advances in deep neural networks have substantially improved the performance of this task. Most state-of-the-art approaches follow an encoder-decoder framework, which generates captions using a sequential recurrent prediction model. However, in this paper, we introduce a novel decision-making framework for image captioning. We utilize a policy network and a value network to collaboratively generate captions. The policy network serves as a local guidance by providing the confidence of predicting the next word according to the current state. Additionally, the value network serves as a global and lookahead guidance by evaluating all possible extensions of the current state. In essence, it adjusts the goal of predicting the correct words towards the goal of generating captions similar to the ground truth captions. We train both networks using an actor-critic reinforcement learning model, with a novel reward defined by visual-semantic embedding. Extensive experiments and analyses on the Microsoft COCO dataset show that the proposed framework outperforms state-of-the-art approaches across different evaluation metrics.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099611&isnumber=8099483

122. From Red Wine to Red Tomato: Composition with Context

Abstract: Compositionality and contextuality are key building blocks of intelligence. They allow us to compose known concepts to generate new and complex ones. However, traditional learning methods do not model both these properties and require copious amounts of labeled data to learn new concepts. A large fraction of existing techniques, e.g., using late fusion, compose concepts but fail to model contextuality. For example, red in red wine is different from red in red tomatoes. In this paper, we present a simple method that respects contextuality in order to compose classifiers of known visual concepts. Our method builds upon the intuition that classifiers lie in a smooth space where compositional transforms can be modeled. We show how it can generalize to unseen combinations of concepts. Our results on composing attributes, objects as well as composing subject, predicate, and objects demonstrate its strong generalization performance compared to baselines. Finally, we present detailed analysis of our method and highlight its properties.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099612&isnumber=8099483

123. Captioning Images with Diverse Objects

Abstract: Recent captioning models are limited in their ability to scale and describe concepts unseen in paired image-text corpora. We propose the Novel Object Captioner (NOC), a deep visual semantic captioning model that can describe a large number of object categories not present in existing image-caption datasets. Our model takes advantage of external sources - labeled images from object recognition datasets, and semantic knowledge extracted from unannotated text. We propose minimizing a joint objective which can learn from these diverse data sources and leverage distributional semantic embeddings, enabling the model to generalize and describe novel objects outside of image-caption datasets. We demonstrate that our model exploits semantic information to generate captions for hundreds of object categories in the ImageNet object recognition dataset that are not observed in MSCOCO image-caption training data, as well as many categories that are observed very rarely. Both automatic evaluations and human judgements show that our model considerably outperforms prior work in being able to describe many more categories of objects.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099613&isnumber=8099483

124. Self-Critical Sequence Training for Image Captioning

Abstract: Recently it has been shown that policy-gradient methods for reinforcement learning can be utilized to train deep end-to-end systems directly on non-differentiable metrics for the task at hand. In this paper we consider the problem of optimizing image captioning systems using reinforcement learning, and show that by carefully optimizing our systems using the test metrics of the MSCOCO task, significant gains in performance can be realized. Our systems are built using a new optimization approach that we call self-critical sequence training (SCST). SCST is a form of the popular REINFORCE algorithm that, rather than estimating a baseline to normalize the rewards and reduce variance, utilizes the output of its own test-time inference algorithm to normalize the rewards it experiences. Using this approach, estimating the reward signal (as actor-critic methods must do) and estimating normalization (as REINFORCE algorithms typically do) is avoided, while at the same time harmonizing the model with respect to its test-time inference procedure. Empirically we find that directly optimizing the CIDEr metric with SCST and greedy decoding at test-time is highly effective. Our results on the MSCOCO evaluation sever establish a new state-of-the-art on the task, improving the best result in terms of CIDEr from 104.9 to 114.7.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099614&isnumber=8099483

125. Crossing Nets: Combining GANs and VAEs with a Shared Latent Space for Hand Pose Estimation

Abstract: State-of-the-art methods for 3D hand pose estimation from depth images require large amounts of annotated training data. We propose modelling the statistical relationship of 3D hand poses and corresponding depth images using two deep generative models with a shared latent space. By design, our architecture allows for learning from unlabeled image data in a semi-supervised manner. Assuming a one-to-one mapping between a pose and a depth map, any given point in the shared latent space can be projected into both a hand pose or into a corresponding depth map. Regressing the hand pose can then be done by learning a discriminator to estimate the posterior of the latent pose given some depth map. To prevent over-fitting and to better exploit unlabeled depth maps, the generator and discriminator are trained jointly. At each iteration, the generator is updated with the back-propagated gradient from the discriminator to synthesize realistic depth maps of the articulated hand, while the discriminator benefits from an augmented training set of synthesized samples and unlabeled depth maps. The proposed discriminator network architecture is highly efficient and runs at 90fps on the CPU with accuracies comparable or better than state-of-art on 3 publicly available benchmarks.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099615&isnumber=8099483

126. Predicting Behaviors of Basketball Players from First Person Videos

Abstract: This paper presents a method to predict the future movements (location and gaze direction) of basketball players as a whole from their first person videos. The predicted behaviors reflect an individual physical space that affords to take the next actions while conforming to social behaviors by engaging to joint attention. Our key innovation is to use the 3D reconstruction of multiple first person cameras to automatically annotate each others visual semantics of social configurations. We leverage two learning signals uniquely embedded in first person videos. Individually, a first person video records the visual semantics of a spatial and social layout around a person that allows associating with past similar situations. Collectively, first person videos follow joint attention that can link the individuals to a group. We learn the egocentric visual semantics of group movements using a Siamese neural network to retrieve future trajectories. We consolidate the retrieved trajectories from all players by maximizing a measure of social compatibility-the gaze alignment towards joint attention predicted by their social formation, where the dynamics of joint attention is learned by a long-term recurrent convolutional network. This allows us to characterize which social configuration is more plausible and predict future group trajectories.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099616&isnumber=8099483

127. LCR-Net: Localization-Classification-Regression for Human Pose

Abstract: We propose an end-to-end architecture for joint 2D and 3D human pose estimation in natural images. Key to our approach is the generation and scoring of a number of pose proposals per image, which allows us to predict 2D and 3D pose of multiple people simultaneously. Hence, our approach does not require an approximate localization of the humans for initialization. Our architecture, named LCR-Net, contains 3 main components: 1) the pose proposal generator that suggests potential poses at different locations in the image, 2) a classifier that scores the different pose proposals, and 3) a regressor that refines pose proposals both in 2D and 3D. All three stages share the convolutional feature layers and are trained jointly. The final pose estimation is obtained by integrating over neighboring pose hypotheses, which is shown to improve over a standard non maximum suppression algorithm. Our approach significantly outperforms the state of the art in 3D pose estimation on Human3.6M, a controlled environment. Moreover, it shows promising results on real images for both single and multi-person subsets of the MPII 2D pose benchmark.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099617&isnumber=8099483

128. Learning Residual Images for Face Attribute Manipulation

Abstract: Face attributes are interesting due to their detailed description of human faces. Unlike prior researches working on attribute prediction, we address an inverse and more challenging problem called face attribute manipulation which aims at modifying a face image according to a given attribute value. Instead of manipulating the whole image, we propose to learn the corresponding residual image defined as the difference between images before and after the manipulation. In this way, the manipulation can be operated efficiently with modest pixel modification. The framework of our approach is based on the Generative Adversarial Network. It consists of two image transformation networks and a discriminative network. The transformation networks are responsible for the attribute manipulation and its dual operation and the discriminative network is used to distinguish the generated images from real images. We also apply dual learning to allow transformation networks to learn from each other. Experiments show that residual images can be effectively learned and used for attribute manipulations. The generated images remain most of the details in attribute-irrelevant areas.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099618&isnumber=8099483

129. Seeing What is Not There: Learning Context to Determine Where Objects are Missing

Abstract: Most of computer vision focuses on what is in an image. We propose to train a standalone object-centric context representation to perform the opposite task: seeing what is not there. Given an image, our context model can predict where objects should exist, even when no object instances are present. Combined with object detection results, we can perform a novel vision task: finding where objects are missing in an image. Our model is based on a convolutional neural network structure. With a specially designed training strategy, the model learns to ignore objects and focus on context only. It is fully convolutional thus highly efficient. Experiments show the effectiveness of the proposed approach in one important accessibility task: finding city street regions where curb ramps are missing, which could help millions of people with mobility disabilities.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099619&isnumber=8099483

130. Deep Learning on Lie Groups for Skeleton-Based Action Recognition

Abstract: In recent years, skeleton-based action recognition has become a popular 3D classification problem. State-of-the-art methods typically first represent each motion sequence as a high-dimensional trajectory on a Lie group with an additional dynamic time warping, and then shallowly learn favorable Lie group features. In this paper we incorporate the Lie group structure into a deep network architecture to learn more appropriate Lie group features for 3D action recognition. Within the network structure, we design rotation mapping layers to transform the input Lie group features into desirable ones, which are aligned better in the temporal domain. To reduce the high feature dimensionality, the architecture is equipped with rotation pooling layers for the elements on the Lie group. Furthermore, we propose a logarithm mapping layer to map the resulting manifold data into a tangent space that facilitates the application of regular output layers for the final classification. Evaluations of the proposed network for standard 3D human action recognition datasets clearly demonstrate its superiority over existing shallow Lie group feature learning methods as well as most conventional deep learning methods.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099620&isnumber=8099483

131. Harvesting Multiple Views for Marker-Less 3D Human Pose Annotations

Abstract: Recent advances with Convolutional Networks (ConvNets) have shifted the bottleneck for many computer vision tasks to annotated data collection. In this paper, we present a geometry-driven approach to automatically collect annotations for human pose prediction tasks. Starting from a generic ConvNet for 2D human pose, and assuming a multi-view setup, we describe an automatic way to collect accurate 3D human pose annotations. We capitalize on constraints offered by the 3D geometry of the camera setup and the 3D structure of the human body to probabilistically combine per view 2D ConvNet predictions into a globally optimal 3D pose. This 3D pose is used as the basis for harvesting annotations. The benefit of the annotations produced automatically with our approach is demonstrated in two challenging settings: (i) fine-tuning a generic ConvNet-based 2D pose predictor to capture the discriminative aspects of a subjects appearance (i.e.,personalization), and (ii) training a ConvNet from scratch for single view 3D human pose prediction without leveraging 3D pose groundtruth. The proposed multi-view pose estimator achieves state-of-the-art results on standard benchmarks, demonstrating the effectiveness of our method in exploiting the available multi-view information.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099621&isnumber=8099483

132. Coarse-to-Fine Volumetric Prediction for Single-Image 3D Human Pose

Abstract: This paper addresses the challenge of 3D human pose estimation from a single color image. Despite the general success of the end-to-end learning paradigm, top performing approaches employ a two-step solution consisting of a Convolutional Network (ConvNet) for 2D joint localization and a subsequent optimization step to recover 3D pose. In this paper, we identify the representation of 3D pose as a critical issue with current ConvNet approaches and make two important contributions towards validating the value of end-to-end learning for this task. First, we propose a fine discretization of the 3D space around the subject and train a ConvNet to predict per voxel likelihoods for each joint. This creates a natural representation for 3D pose and greatly improves performance over the direct regression of joint coordinates. Second, to further improve upon initial estimates, we employ a coarse-to-fine prediction scheme. This step addresses the large dimensionality increase and enables iterative refinement and repeated processing of the image features. The proposed approach outperforms all state-of-the-art methods on standard benchmarks achieving a relative error reduction greater than 30% on average. Additionally, we investigate using our volumetric representation in a related architecture which is suboptimal compared to our end-to-end approach, but is of practical interest, since it enables training when no image with corresponding 3D groundtruth is available, and allows us to present compelling results for in-the-wild images.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099622&isnumber=8099483

133. Weakly Supervised Action Learning with RNN Based Fine-to-Coarse Modeling

Abstract: We present an approach for weakly supervised learning of human actions. Given a set of videos and an ordered list of the occurring actions, the goal is to infer start and end frames of the related action classes within the video and to train the respective action classifiers without any need for hand labeled frame boundaries. To address this task, we propose a combination of a discriminative representation of subactions, modeled by a recurrent neural network, and a coarse probabilistic model to allow for a temporal alignment and inference over long sequences. While this system alone already generates good results, we show that the performance can be further improved by approximating the number of subactions to the characteristics of the different action classes. To this end, we adapt the number of subaction classes by iterating realignment and reestimation during training. The proposed system is evaluated on two benchmark datasets, the Breakfast and the Hollywood extended dataset, showing a competitive performance on various weak learning tasks such as temporal action segmentation and action alignment.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099623&isnumber=8099483

134. Disentangled Representation Learning GAN for Pose-Invariant Face Recognition

Abstract: The large pose discrepancy between two face images is one of the key challenges in face recognition. Conventional approaches for pose-invariant face recognition either perform face frontalization on, or learn a pose-invariant representation from, a non-frontal face image. We argue that it is more desirable to perform both tasks jointly to allow them to leverage each other. To this end, this paper proposes Disentangled Representation learning-Generative Adversarial Network (DR-GAN) with three distinct novelties. First, the encoder-decoder structure of the generator allows DR-GAN to learn a generative and discriminative representation, in addition to image synthesis. Second, this representation is explicitly disentangled from other face variations such as pose, through the pose code provided to the decoder and pose estimation in the discriminator. Third, DR-GAN can take one or multiple images as the input, and generate one unified representation along with an arbitrary number of synthetic images. Quantitative and qualitative evaluation on both controlled and in-the-wild databases demonstrate the superiority of DR-GAN over the state of the art.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099624&isnumber=8099483

135. ArtTrack: Articulated Multi-Person Tracking in the Wild

Abstract: In this paper we propose an approach for articulated tracking of multiple people in unconstrained videos. Our starting point is a model that resembles existing architectures for single-frame pose estimation but is substantially faster. We achieve this in two ways: (1) by simplifying and sparsifying the body-part relationship graph and leveraging recent methods for faster inference, and (2) by offloading a substantial share of computation onto a feed-forward convolutional architecture that is able to detect and associate body joints of the same person even in clutter. We use this model to generate proposals for body joint locations and formulate articulated tracking as spatio-temporal grouping of such proposals. This allows to jointly solve the association problem for all people in the scene by propagating evidence from strong detections through time and enforcing constraints that each proposal can be assigned to one person only. We report results on a public MPII Human Pose benchmark and on a new MPII Video Pose dataset of image sequences with multiple people. We demonstrate that our model achieves state-of-the-art results while using only a fraction of time and is able to leverage temporal information to improve state-of-the-art for crowded scenes.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099625&isnumber=8099483

136. Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields

Abstract: We present an approach to efficiently detect the 2D pose of multiple people in an image. The approach uses a nonparametric representation, which we refer to as Part Affinity Fields (PAFs), to learn to associate body parts with individuals in the image. The architecture encodes global context, allowing a greedy bottom-up parsing step that maintains high accuracy while achieving realtime performance, irrespective of the number of people in the image. The architecture is designed to jointly learn part locations and their association via two branches of the same sequential prediction process. Our method placed first in the inaugural COCO 2016 keypoints challenge, and significantly exceeds the previous state-of-the-art result on the MPII Multi-Person benchmark, both in performance and efficiency.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099626&isnumber=8099483

137. Template Matching with Deformable Diversity Similarity

Abstract: We propose a novel measure for template matching named Deformable Diversity Similarity - based on the diversity of feature matches between a target image window and the template. We rely on both local appearance and geometric information that jointly lead to a powerful approach for matching. Our key contribution is a similarity measure, that is robust to complex deformations, significant background clutter, and occlusions. Empirical evaluation on the most up-to-date benchmark shows that our method outperforms the current state-of-the-art in its detection accuracy while improving computational complexity.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099627&isnumber=8099483

138. Beyond Triplet Loss: A Deep Quadruplet Network for Person Re-identification

Abstract: Person re-identification (ReID) is an important task in wide area video surveillance which focuses on identifying people across different cameras. Recently, deep learning networks with a triplet loss become a common framework for person ReID. However, the triplet loss pays main attentions on obtaining correct orders on the training set. It still suffers from a weaker generalization capability from the training set to the testing set, thus resulting in inferior performance. In this paper, we design a quadruplet loss, which can lead to the model output with a larger inter-class variation and a smaller intra-class variation compared to the triplet loss. As a result, our model has a better generalization ability and can achieve a higher performance on the testing set. In particular, a quadruplet deep network using a margin-based online hard negative mining is proposed based on the quadruplet loss for the person ReID. In extensive experiments, the proposed network outperforms most of the state-of-the-art algorithms on representative datasets which clearly demonstrates the effectiveness of our proposed method.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099628&isnumber=8099483

139. Agent-Centric Risk Assessment: Accident Anticipation and Risky Region Localization

Abstract: For survival, a living agent (e.g., human in Fig. 1(a)) must have the ability to assess risk (1) by temporally anticipating accidents before they occur (Fig. 1(b)), and (2) by spatially localizing risky regions (Fig. 1(c)) in the environment to move away from threats. In this paper, we take an agent-centric approach to study the accident anticipation and risky region localization tasks. We propose a novel soft-attention Recurrent Neural Network (RNN) which explicitly models both spatial and appearance-wise non-linear interaction between the agent triggering the event and another agent or static-region involved. In order to test our proposed method, we introduce the Epic Fail (EF) dataset consisting of 3000 viral videos capturing various accidents. In the experiments, we evaluate the risk assessment accuracy both in the temporal domain (accident anticipation) and spatial domain (risky region localization) on our EF dataset and the Street Accident (SA) dataset. Our method consistently outperforms other baselines on both datasets.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099629&isnumber=8099483

140. Bidirectional Multirate Reconstruction for Temporal Modeling in Videos

Abstract: Despite the recent success of neural networks in image feature learning, a major problem in the video domain is the lack of sufficient labeled data for learning to model temporal information. In this paper, we propose an unsupervised temporal modeling method that learns from untrimmed videos. The speed of motion varies constantly, e.g., a man may run quickly or slowly. We therefore train a Multirate Visual Recurrent Model (MVRM) by encoding frames of a clip with different intervals. This learning process makes the learned model more capable of dealing with motion speed variance. Given a clip sampled from a video, we use its past and future neighboring clips as the temporal context, and reconstruct the two temporal transitions, i.e., present-past transition and present-future transition, reflecting the temporal information in different views. The proposed method exploits the two transitions simultaneously by incorporating a bidirectional reconstruction which consists of a backward reconstruction and a forward reconstruction. We apply the proposed method to two challenging video tasks, i.e., complex event detection and video captioning, in which it achieves state-of-the-art performance. Notably, our method generates the best single feature for event detection with a relative improvement of 10.4% on the MEDTest-13 dataset and achieves the best performance in video captioning across all evaluation metrics on the YouTube2Text dataset.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099630&isnumber=8099483

141. Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

Abstract: This paper proposes a novel tracker which is controlled by sequentially pursuing actions learned by deep reinforcement learning. In contrast to the existing trackers using deep networks, the proposed tracker is designed to achieve a light computation as well as satisfactory tracking accuracy in both location and scale. The deep network to control actions is pre-trained using various training sequences and fine-tuned during tracking for online adaptation to target and background changes. The pre-training is done by utilizing deep reinforcement learning as well as supervised learning. The use of reinforcement learning enables even partially labeled data to be successfully utilized for semi-supervised learning. Through evaluation of the OTB dataset, the proposed tracker is validated to achieve a competitive performance that is three times faster than state-of-the-art, deep network-based trackers. The fast version of the proposed method, which operates in real-time on GPU, outperforms the state-of-the-art real-time trackers.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099631&isnumber=8099483

142. TGIF-QA: Toward Spatio-Temporal Reasoning in Visual Question Answering

Abstract: Vision and language understanding has emerged as a subject undergoing intense study in Artificial Intelligence. Among many tasks in this line of research, visual question answering (VQA) has been one of the most successful ones, where the goal is to learn a model that understands visual content at region-level details and finds their associations with pairs of questions and answers in the natural language form. Despite the rapid progress in the past few years, most existing work in VQA have focused primarily on images. In this paper, we focus on extending VQA to the video domain and contribute to the literature in three important ways. First, we propose three new tasks designed specifically for video VQA, which require spatio-temporal reasoning from videos to answer questions correctly. Next, we introduce a new large-scale dataset for video VQA named TGIF-QA that extends existing VQA work with our new tasks. Finally, we propose a dual-LSTM based approach with both spatial and temporal attention, and show its effectiveness over conventional VQA techniques through empirical evaluations.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099632&isnumber=8099483

143. Making 360° Video Watchable in 2D: Learning Videography for Click Free Viewing

Abstract: 360° Video requires human viewers to actively control where to look while watching the video. Although it provides a more immersive experience of the visual content, it also introduces additional burden for viewers, awkward interfaces to navigate the video lead to suboptimal viewing experiences. Virtual cinematography is an appealing direction to remedy these problems, but conventional methods are limited to virtual environments or rely on hand-crafted heuristics. We propose a new algorithm for virtual cinematography that automatically controls a virtual camera within a 360° video. Compared to the state of the art, our algorithm allows more general camera control, avoids redundant outputs, and extracts its output videos substantially more efficiently. Experimental results on over 7 hours of real in the wild video show that our generalized camera control is crucial for viewing 360° video, while the proposed efficient algorithm is essential for making the generalized control computationally tractable.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099633&isnumber=8099483

144. Unsupervised Adaptive Re-identification in Open World Dynamic Camera Networks

Abstract: Person re-identification is an open and challenging problem in computer vision. Existing approaches have concentrated on either designing the best feature representation or learning optimal matching metrics in a static setting where the number of cameras are fixed in a network. Most approaches have neglected the dynamic and open world nature of the re-identification problem, where a new camera may be temporarily inserted into an existing system to get additional information. To address such a novel and very practical problem, we propose an unsupervised adaptation scheme for re-identification models in a dynamic camera network. First, we formulate a domain perceptive re-identification method based on geodesic flow kernel that can effectively find the best source camera (already installed) to adapt with a newly introduced target camera, without requiring a very expensive training phase. Second, we introduce a transitive inference algorithm for re-identification that can exploit the information from best source camera to improve the accuracy across other camera pairs in a network of multiple cameras. Extensive experiments on four benchmark datasets demonstrate that the proposed approach significantly outperforms the state-of-the-art unsupervised learning based alternatives whilst being extremely efficient to compute.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099634&isnumber=8099483

145. Context-Aware Correlation Filter Tracking

Abstract: Correlation filter (CF) based trackers have recently gained a lot of popularity due to their impressive performance on benchmark datasets, while maintaining high frame rates. A significant amount of recent research focuses on the incorporation of stronger features for a richer representation of the tracking target. However, this only helps to discriminate the target from background within a small neighborhood. In this paper, we present a framework that allows the explicit incorporation of global context within CF trackers. We reformulate the original optimization problem and provide a closed form solution for single and multi-dimensional features in the primal and dual domain. Extensive experiments demonstrate that this framework significantly improves the performance of many CF trackers with only a modest impact on frame rate.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099635&isnumber=8099483

146. Deep 360 Pilot: Learning a Deep Agent for Piloting through 360° Sports Videos

Abstract: Watching a 360° sports video requires a viewer to continuously select a viewing angle, either through a sequence of mouse clicks or head movements. To relieve the viewer from this “360 piloting” task, we propose “deep 360 pilot” - a deep learning-based agent for piloting through 360° sports videos automatically. At each frame, the agent observes a panoramic image and has the knowledge of previously selected viewing angles. The task of the agent is to shift the current viewing angle (i.e. action) to the next preferred one (i.e., goal). We propose to directly learn an online policy of the agent from data. Specifically, we leverage a state-of-the-art object detector to propose a few candidate objects of interest (yellow boxes in Fig. 1). Then, a recurrent neural network is used to select the main object (green dash boxes in Fig. 1). Given the main object and previously selected viewing angles, our method regresses a shift in viewing angle to move to the next one. We use the policy gradient technique to jointly train our pipeline, by minimizing: (1) a regression loss measuring the distance between the selected and ground truth viewing angles, (2) a smoothness loss encouraging smooth transition in viewing angle, and (3) maximizing an expected reward offocusing on a foreground object. To evaluate our method, we built a new 360-Sports video dataset consisting offive sports domains. We trained domain-specific agents and achieved the best performance on viewing angle selection accuracy and users’ preference compared to [53] and other baselines.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099636&isnumber=8099483

147. Slow Flow: Exploiting High-Speed Cameras for Accurate and Diverse Optical Flow Reference Data

Abstract: Existing optical flow datasets are limited in size and variability due to the difficulty of capturing dense ground truth. In this paper, we tackle this problem by tracking pixels through densely sampled space-time volumes recorded with a high-speed video camera. Our model exploits the linearity of small motions and reasons about occlusions from multiple frames. Using our technique, we are able to establish accurate reference flow fields outside the laboratory in natural environments. Besides, we show how our predictions can be used to augment the input images with realistic motion blur. We demonstrate the quality of the produced flow fields on synthetic and real-world datasets. Finally, we collect a novel challenging optical flow dataset by applying our technique on data from a high-speed camera and analyze the performance of the state-of-the-art in optical flow under various levels of motion blur.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099637&isnumber=8099483

148. CDC: Convolutional-De-Convolutional Networks for Precise Temporal Action Localization in Untrimmed Videos

Abstract: Temporal action localization is an important yet challenging problem. Given a long, untrimmed video consisting of multiple action instances and complex background contents, we need not only to recognize their action categories, but also to localize the start time and end time of each instance. Many state-of-the-art systems use segment-level classifiers to select and rank proposal segments of pre-determined boundaries. However, a desirable model should move beyond segment-level and make dense predictions at a fine granularity in time to determine precise temporal boundaries. To this end, we design a novel Convolutional-De-Convolutional (CDC) network that places CDC filters on top of 3D ConvNets, which have been shown to be effective for abstracting action semantics but reduce the temporal length of the input data. The proposed CDC filter performs the required temporal upsampling and spatial downsampling operations simultaneously to predict actions at the frame-level granularity. It is unique in jointly modeling action semantics in space-time and fine-grained temporal dynamics. We train the CDC network in an end-to-end manner efficiently. Our model not only achieves superior performance in detecting actions in every frame, but also significantly boosts the precision of localizing temporal boundaries. Finally, the CDC network demonstrates a very high efficiency with the ability to process 500 frames per second on a single GPU server. Source code and trained models are available online at https://bitbucket.org/columbiadvmm/cdc.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099638&isnumber=8099483

149. Exploiting 2D Floorplan for Building-Scale Panorama RGBD Alignment

Abstract: This paper presents a novel algorithm that utilizes a 2D floorplan to align panorama RGBD scans. While effective panorama RGBD alignment techniques exist, such a system requires extremely dense RGBD image sampling. Our approach can significantly reduce the number of necessary scans with the aid of a floorplan image. We formulate a novel Markov Random Field inference problem as a scan placement over the floorplan, as opposed to the conventional scan-to-scan alignment. The technical contributions lie in multi-modal image correspondence cues (between scans and schematic floorplan) as well as a novel coverage potential avoiding an inherent stacking bias. The proposed approach has been evaluated on five challenging large indoor spaces. To the best of our knowledge, we present the first effective system that utilizes a 2D floorplan image for building-scale 3D pointcloud alignment. The source code and the data are shared with the community to further enhance indoor mapping research.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099639&isnumber=8099483

150. A Combinatorial Solution to Non-Rigid 3D Shape-to-Image Matching

Abstract: We propose a combinatorial solution for the problem of non-rigidly matching a 3D shape to 3D image data. To this end, we model the shape as a triangular mesh and allow each triangle of this mesh to be rigidly transformed to achieve a suitable matching to the image. By penalising the distance and the relative rotation between neighbouring triangles our matching compromises between the image and the shape information. In this paper, we resolve two major challenges: Firstly, we address the resulting large and NP-hard combinatorial problem with a suitable graph-theoretic approach. Secondly, we propose an efficient discretisation of the unbounded 6-dimensional Lie group SE(3). To our knowledge this is the first combinatorial formulation for non-rigid 3D shape-to-image matching. In contrast to existing local (gradient descent) optimisation methods, we obtain solutions that do not require a good initialisation and that are within a bound of the optimal solution. We evaluate the proposed combinatorial method on the two problems of non-rigid 3D shape-to-shape and non-rigid 3D shape-to-image registration and demonstrate that it provides promising results.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099640&isnumber=8099483

151. NID-SLAM: Robust Monocular SLAM Using Normalised Information Distance

Abstract: We propose a direct monocular SLAM algorithm based on the Normalised Information Distance (NID) metric. In contrast to current state-of-the-art direct methods based on photometric error minimisation, our information-theoretic NID metric provides robustness to appearance variation due to lighting, weather and structural changes in the scene. We demonstrate successful localisation and mapping across changes in lighting with a synthetic indoor scene, and across changes in weather (direct sun, rain, snow) using real-world data collected from a vehicle-mounted camera. Our approach runs in real-time on a consumer GPU using OpenGL, and provides comparable localisation accuracy to state-of-the-art photometric methods but significantly outperforms both direct and feature-based methods in robustness to appearance changes.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099641&isnumber=8099483

152. End-to-End Training of Hybrid CNN-CRF Models for Stereo

Abstract: We propose a novel and principled hybrid CNN+CRF model for stereo estimation. Our model allows to exploit the advantages of both, convolutional neural networks (CNNs) and conditional random fields (CRFs) in an unified approach. The CNNs compute expressive features for matching and distinctive color edges, which in turn are used to compute the unary and binary costs of the CRF. For inference, we apply a recently proposed highly parallel dual block descent algorithm which only needs a small fixed number of iterations to compute a high-quality approximate minimizer. As the main contribution of the paper, we propose a theoretically sound method based on the structured output support vector machine (SSVM) to train the hybrid CNN+CRF model on large-scale data end-to-end. Our trained models perform very well despite the fact that we are using shallow CNNs and do not apply any kind of post-processing to the final output of the CRF. We evaluate our combined models on challenging stereo benchmarks such as Middlebury 2014 and Kitti 2015 and also investigate the performance of each individual component.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099642&isnumber=8099483

153. Learning Shape Abstractions by Assembling Volumetric Primitives

Abstract: We present a learning framework for abstracting complex shapes by learning to assemble objects using 3D volumetric primitives. In addition to generating simple and geometrically interpretable explanations of 3D objects, our framework also allows us to automatically discover and exploit consistent structure in the data. We demonstrate that using our method allows predicting shape representations which can be leveraged for obtaining a consistent parsing across the instances of a shape collection and constructing an interpretable shape similarity measure. We also examine applications for image-based prediction as well as shape manipulation.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099643&isnumber=8099483

154. Locality-Sensitive Deconvolution Networks with Gated Fusion for RGB-D Indoor Semantic Segmentation

Abstract: This paper focuses on indoor semantic segmentation using RGB-D data. Although the commonly used deconvolution networks (DeconvNet) have achieved impressive results on this task, we find there is still room for improvements in two aspects. One is about the boundary segmentation. DeconvNet aggregates large context to predict the label of each pixel, inherently limiting the segmentation precision of object boundaries. The other is about RGB-D fusion. Recent state-of-the-art methods generally fuse RGB and depth networks with equal-weight score fusion, regardless of the varying contributions of the two modalities on delineating different categories in different scenes. To address the two problems, we first propose a locality-sensitive DeconvNet (LS-DeconvNet) to refine the boundary segmentation over each modality. LS-DeconvNet incorporates locally visual and geometric cues from the raw RGB-D data into each DeconvNet, which is able to learn to upsample the coarse convolutional maps with large context whilst recovering sharp object boundaries. Towards RGB-D fusion, we introduce a gated fusion layer to effectively combine the two LS-DeconvNets. This layer can learn to adjust the contributions of RGB and depth over each pixel for high-performance object recognition. Experiments on the large-scale SUN RGB-D dataset and the popular NYU-Depth v2 dataset show that our approach achieves new state-of-the-art results for RGB-D indoor semantic segmentation.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099644&isnumber=8099483

155. Acquiring Axially-Symmetric Transparent Objects Using Single-View Transmission Imaging

Abstract: We propose a novel, practical solution for high quality reconstruction of axially-symmetric transparent objects. While a special case, such transparent objects are ubiquitous in the real world. Common examples of these are glasses, goblets, tumblers, carafes, etc., that can have very unique and visually appealing forms making their reconstruction interesting for vision and graphics applications. Our acquisition setup involves imaging such objects from a single viewpoint while illuminating them from directly behind with a few patterns emitted by an LCD panel. Our reconstruction step is then based on optimization of the objects geometry and its refractive index to minimize the difference between observed and simulated transmission/refraction of rays passing through the object. We exploit the objects axial symmetry as a strong shape prior which allows us to achieve robust reconstruction from a single viewpoint using a simple, commodity acquisition setup. We demonstrate high quality reconstruction of several common rotationally symmetric as well as more complex n-fold symmetric transparent objects with our approach.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099645&isnumber=8099483

156. Regressing Robust and Discriminative 3D Morphable Models with a Very Deep Neural Network

Abstract: The 3D shapes of faces are well known to be discriminative. Yet despite this, they are rarely used for face recognition and always under controlled viewing conditions. We claim that this is a symptom of a serious but often overlooked problem with existing methods for single view 3D face reconstruction: when applied in the wild, their 3D estimates are either unstable and change for different photos of the same subject or they are over-regularized and generic. In response, we describe a robust method for regressing discriminative 3D morphable face models (3DMM). We use a convolutional neural network (CNN) to regress 3DMM shape and texture parameters directly from an input photo. We overcome the shortage of training data required for this purpose by offering a method for generating huge numbers of labeled examples. The 3D estimates produced by our CNN surpass state of the art accuracy on the MICC data set. Coupled with a 3D-3D face matching pipeline, we show the first competitive face recognition results on the LFW, YTF and IJB-A benchmarks using 3D face shapes as representations, rather than the opaque deep feature vectors used by other modern systems.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099646&isnumber=8099483

157. End-to-End 3D Face Reconstruction with Deep Neural Networks

Abstract: Monocular 3D facial shape reconstruction from a single 2D facial image has been an active research area due to its wide applications. Inspired by the success of deep neural networks (DNN), we propose a DNN-based approach for End-to-End 3D FAce Reconstruction (UH-E2FAR) from a single 2D image. Different from recent works that reconstruct and refine the 3D face in an iterative manner using both an RGB image and an initial 3D facial shape rendering, our DNN model is end-to-end, and thus the complicated 3D rendering process can be avoided. Moreover, we integrate in the DNN architecture two components, namely a multi-task loss function and a fusion convolutional neural network (CNN) to improve facial expression reconstruction. With the multi-task loss function, 3D face reconstruction is divided into neutral 3D facial shape reconstruction and expressive 3D facial shape reconstruction. The neutral 3D facial shape is class-specific. Therefore, higher layer features are useful. In comparison, the expressive 3D facial shape favors lower or intermediate layer features. With the fusion-CNN, features from different intermediate layers are fused and transformed for predicting the 3D expressive facial shape. Through extensive experiments, we demonstrate the superiority of our end-to-end framework in improving the accuracy of 3D face reconstruction.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099647&isnumber=8099483

158. DUST: Dual Union of Spatio-Temporal Subspaces for Monocular Multiple Object 3D Reconstruction

Abstract: We present an approach to reconstruct the 3D shape of multiple deforming objects from incomplete 2D trajectories acquired by a single camera. Additionally, we simultaneously provide spatial segmentation (i.e., we identify each of the objects in every frame) and temporal clustering (i.e., we split the sequence into primitive actions). This advances existing work, which only tackled the problem for one single object and non-occluded tracks. In order to handle several objects at a time from partial observations, we model point trajectories as a union of spatial and temporal subspaces, and optimize the parameters of both modalities, the non-observed point tracks and the 3D shape via augmented Lagrange multipliers. The algorithm is fully unsupervised and results in a formulation which does not need initialization. We thoroughly validate the method on challenging scenarios with several human subjects performing different activities which involve complex motions and close interaction. We show our approach achieves state-of-the-art 3D reconstruction results, while it also provides spatial and temporal segmentation.

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8099648&isnumber=8099483

159. Finding Tiny Faces

Abstract: Though tremendous strides have been mad

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/570914
推荐阅读
相关标签
  

闽ICP备14008679号