赞
踩
①Yolov5的输出
格式一般为a × b × c × 85的形式,其中a*b*c表示框的数目,85则涵盖框的位置信息(x,y,w,h)、置信度Pc和80个类别的预测概率c1,...,c80。下图展示了不同版本Yolov5的输出信息:
②阈值过滤锚框
简要介绍两种过滤锚框的方法:
A:利用置信度(box_confidence,即Pc)和预测概率(box_class_probs,即c1,...,c80)计算锚框的得分(box_scores),如果最高的得分高于过滤阈值(threshold),则保留该锚框的信息,反之过滤该锚框。
B:利用非线性激活函数(如Sigmoid)函数等处理置信度(box_confidence,即Pc),将最高的结果与过滤阈值比较,高则保留,低则过滤。(RKNN提供的方式)
③非极大值抑制(NMS)
通过计算交并比(intersection over Union,IOU)进一步过滤锚框。
IOU介绍:IOU即两个矩形框的交集面积与并集面积的比值。
简略介绍Yolov5利用NMS过滤锚框的一种方法:计算IOU的值,若value≤NMS_THRESH,则保留锚框,反之去除。
项目地址:rknn-toolkit2
- import os
- import urllib
- import traceback
- import time
- import sys
- import numpy as np
- import cv2
- from rknn.api import RKNN
-
- ONNX_MODEL = 'yolov5s.onnx'
- RKNN_MODEL = 'yolov5s.rknn'
- IMG_PATH = './bus.jpg'
- DATASET = './dataset.txt'
-
- QUANTIZE_ON = True
-
- BOX_THESH = 0.5
- NMS_THRESH = 0.6
- IMG_SIZE = 640
-
- CLASSES = ("person", "bicycle", "car", "motorbike ", "aeroplane ", "bus ", "train", "truck ", "boat", "traffic light",
- "fire hydrant", "stop sign ", "parking meter", "bench", "bird", "cat", "dog ", "horse ", "sheep", "cow", "elephant",
- "bear", "zebra ", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite",
- "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife ",
- "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza ", "donut", "cake", "chair", "sofa",
- "pottedplant", "bed", "diningtable", "toilet ", "tvmonitor", "laptop ", "mouse ", "remote ", "keyboard ", "cell phone", "microwave ",
- "oven ", "toaster", "sink", "refrigerator ", "book", "clock", "vase", "scissors ", "teddy bear ", "hair drier", "toothbrush ")
-
-
- def sigmoid(x):
- return 1 / (1 + np.exp(-x))
-
-
- def xywh2xyxy(x):
- # Convert [x, y, w, h] to [x1, y1, x2, y2]
- y = np.copy(x)
- y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
- y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
- y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
- y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
- return y
-
-
- def process(input, mask, anchors):
-
- anchors = [anchors[i] for i in mask]
- grid_h, grid_w = map(int, input.shape[0:2])
-
- box_confidence = sigmoid(input[..., 4])
- box_confidence = np.expand_dims(box_confidence, axis=-1)
-
- box_class_probs = sigmoid(input[..., 5:])
-
- box_xy = sigmoid(input[..., :2])*2 - 0.5
-
- col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
- row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
- col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
- row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
- grid = np.concatenate((col, row), axis=-1)
- box_xy += grid
- box_xy *= int(IMG_SIZE/grid_h)
-
- box_wh = pow(sigmoid(input[..., 2:4])*2, 2)
- box_wh = box_wh * anchors
-
- box = np.concatenate((box_xy, box_wh), axis=-1)
-
- return box, box_confidence, box_class_probs
-
-
- def filter_boxes(boxes, box_confidences, box_class_probs):
- """Filter boxes with box threshold. It's a bit different with origin yolov5 post process!
- # Arguments
- boxes: ndarray, boxes of objects.
- box_confidences: ndarray, confidences of objects.
- box_class_probs: ndarray, class_probs of objects.
- # Returns
- boxes: ndarray, filtered boxes.
- classes: ndarray, classes for boxes.
- scores: ndarray, scores for boxes.
- """
- box_classes = np.argmax(box_class_probs, axis=-1)
- box_class_scores = np.max(box_class_probs, axis=-1)
- pos = np.where(box_confidences[..., 0] >= BOX_THESH)
-
- boxes = boxes[pos]
- classes = box_classes[pos]
- scores = box_class_scores[pos]
-
- return boxes, classes, scores
-
-
- def nms_boxes(boxes, scores):
- """Suppress non-maximal boxes.
- # Arguments
- boxes: ndarray, boxes of objects.
- scores: ndarray, scores of objects.
- # Returns
- keep: ndarray, index of effective boxes.
- """
- x = boxes[:, 0]
- y = boxes[:, 1]
- w = boxes[:, 2] - boxes[:, 0]
- h = boxes[:, 3] - boxes[:, 1]
-
- areas = w * h
- order = scores.argsort()[::-1]
-
- keep = []
- while order.size > 0:
- i = order[0]
- keep.append(i)
-
- xx1 = np.maximum(x[i], x[order[1:]])
- yy1 = np.maximum(y[i], y[order[1:]])
- xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
- yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
-
- w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
- h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
- inter = w1 * h1
-
- ovr = inter / (areas[i] + areas[order[1:]] - inter)
- inds = np.where(ovr <= NMS_THRESH)[0]
- order = order[inds + 1]
- keep = np.array(keep)
- return keep
-
-
- def yolov5_post_process(input_data):
- masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
- anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
- [59, 119], [116, 90], [156, 198], [373, 326]]
-
- boxes, classes, scores = [], [], []
- for input, mask in zip(input_data, masks):
- b, c, s = process(input, mask, anchors)
- b, c, s = filter_boxes(b, c, s)
- boxes.append(b)
- classes.append(c)
- scores.append(s)
-
- boxes = np.concatenate(boxes)
- boxes = xywh2xyxy(boxes)
- classes = np.concatenate(classes)
- scores = np.concatenate(scores)
-
- nboxes, nclasses, nscores = [], [], []
- for c in set(classes):
- inds = np.where(classes == c)
- b = boxes[inds]
- c = classes[inds]
- s = scores[inds]
-
- keep = nms_boxes(b, s)
-
- nboxes.append(b[keep])
- nclasses.append(c[keep])
- nscores.append(s[keep])
-
- if not nclasses and not nscores:
- return None, None, None
-
- boxes = np.concatenate(nboxes)
- classes = np.concatenate(nclasses)
- scores = np.concatenate(nscores)
-
- return boxes, classes, scores
-
-
- def draw(image, boxes, scores, classes):
- """Draw the boxes on the image.
- # Argument:
- image: original image.
- boxes: ndarray, boxes of objects.
- classes: ndarray, classes of objects.
- scores: ndarray, scores of objects.
- all_classes: all classes name.
- """
- for box, score, cl in zip(boxes, scores, classes):
- top, left, right, bottom = box
- print('class: {}, score: {}'.format(CLASSES[cl], score))
- print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))
- top = int(top)
- left = int(left)
- right = int(right)
- bottom = int(bottom)
-
- cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
- cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
- (top, left - 6),
- cv2.FONT_HERSHEY_SIMPLEX,
- 0.6, (0, 0, 255), 2)
-
-
- def letterbox(im, new_shape=(640, 640), color=(0, 0, 0)):
- # Resize and pad image while meeting stride-multiple constraints
- shape = im.shape[:2] # current shape [height, width]
- if isinstance(new_shape, int):
- new_shape = (new_shape, new_shape)
-
- # Scale ratio (new / old)
- r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
-
- # Compute padding
- ratio = r, r # width, height ratios
- new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
- dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
-
- dw /= 2 # divide padding into 2 sides
- dh /= 2
-
- if shape[::-1] != new_unpad: # resize
- im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
- top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
- left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
- im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
- return im, ratio, (dw, dh)
-
-
- if __name__ == '__main__':
-
- # Create RKNN object
- rknn = RKNN(verbose=True)
-
- # pre-process config
- print('--> Config model')
- rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]])
- print('done')
-
- # Load ONNX model
- print('--> Loading model')
- ret = rknn.load_onnx(model=ONNX_MODEL, outputs=['378', '439', '500'])
- if ret != 0:
- print('Load model failed!')
- exit(ret)
- print('done')
-
- # Build model
- print('--> Building model')
- ret = rknn.build(do_quantization=QUANTIZE_ON, dataset=DATASET)
- if ret != 0:
- print('Build model failed!')
- exit(ret)
- print('done')
-
- # Export RKNN model
- print('--> Export rknn model')
- ret = rknn.export_rknn(RKNN_MODEL)
- if ret != 0:
- print('Export rknn model failed!')
- exit(ret)
- print('done')
-
- # Init runtime environment
- print('--> Init runtime environment')
- ret = rknn.init_runtime()
- # ret = rknn.init_runtime('rk3566')
- if ret != 0:
- print('Init runtime environment failed!')
- exit(ret)
- print('done')
-
- # Set inputs
- img = cv2.imread(IMG_PATH)
- # img, ratio, (dw, dh) = letterbox(img, new_shape=(IMG_SIZE, IMG_SIZE))
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
-
- # Inference
- print('--> Running model')
- outputs = rknn.inference(inputs=[img])
- np.save('./onnx_yolov5_0.npy', outputs[0])
- np.save('./onnx_yolov5_1.npy', outputs[1])
- np.save('./onnx_yolov5_2.npy', outputs[2])
- print('done')
-
- # post process
- input0_data = outputs[0]
- input1_data = outputs[1]
- input2_data = outputs[2]
-
- input0_data = input0_data.reshape([3, -1]+list(input0_data.shape[-2:]))
- input1_data = input1_data.reshape([3, -1]+list(input1_data.shape[-2:]))
- input2_data = input2_data.reshape([3, -1]+list(input2_data.shape[-2:]))
-
- input_data = list()
- input_data.append(np.transpose(input0_data, (2, 3, 0, 1)))
- input_data.append(np.transpose(input1_data, (2, 3, 0, 1)))
- input_data.append(np.transpose(input2_data, (2, 3, 0, 1)))
-
- boxes, classes, scores = yolov5_post_process(input_data)
-
- img_1 = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
- if boxes is not None:
- draw(img_1, boxes, scores, classes)
- # show output
- # cv2.imshow("post process result", img_1)
- # cv2.waitKey(0)
- # cv2.destroyAllWindows()
-
- rknn.release()
①模型及数据:
- ONNX_MODEL = 'yolov5s.onnx'
- RKNN_MODEL = 'yolov5s.rknn'
- IMG_PATH = './bus.jpg'
- DATASET = './dataset.txt'
在rknn的开源项目中,提供了一个用于测试的yolov5s.onnx文件。
②模型导入
- # Load ONNX model
- print('--> Loading model')
- ret = rknn.load_onnx(model=ONNX_MODEL, outputs=['378', '439', '500'])
- if ret != 0:
- print('Load model failed!')
- exit(ret)
- print('done')
这段代码截取导入了onnx模型的三个输出,其编号为'378'、‘439’、‘500’,即上图中红框的三个输出。
③后处理模块
-
- def filter_boxes(boxes, box_confidences, box_class_probs):
- """Filter boxes with box threshold. It's a bit different with origin yolov5 post process!
- # Arguments
- boxes: ndarray, boxes of objects.
- box_confidences: ndarray, confidences of objects.
- box_class_probs: ndarray, class_probs of objects.
- # Returns
- boxes: ndarray, filtered boxes.
- classes: ndarray, classes for boxes.
- scores: ndarray, scores for boxes.
- """
- box_classes = np.argmax(box_class_probs, axis=-1)
- box_class_scores = np.max(box_class_probs, axis=-1)
- pos = np.where(box_confidences[..., 0] >= BOX_THESH)
-
- boxes = boxes[pos]
- classes = box_classes[pos]
- scores = box_class_scores[pos]
-
- return boxes, classes, scores
-
-
- def nms_boxes(boxes, scores):
- """Suppress non-maximal boxes.
- # Arguments
- boxes: ndarray, boxes of objects.
- scores: ndarray, scores of objects.
- # Returns
- keep: ndarray, index of effective boxes.
- """
- x = boxes[:, 0]
- y = boxes[:, 1]
- w = boxes[:, 2] - boxes[:, 0]
- h = boxes[:, 3] - boxes[:, 1]
-
- areas = w * h
- order = scores.argsort()[::-1]
-
- keep = []
- while order.size > 0:
- i = order[0]
- keep.append(i)
-
- xx1 = np.maximum(x[i], x[order[1:]])
- yy1 = np.maximum(y[i], y[order[1:]])
- xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
- yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
-
- w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
- h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
- inter = w1 * h1
-
- ovr = inter / (areas[i] + areas[order[1:]] - inter)
- inds = np.where(ovr <= NMS_THRESH)[0]
- order = order[inds + 1]
- keep = np.array(keep)
- return keep
-
-
- def yolov5_post_process(input_data):
- masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
- anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
- [59, 119], [116, 90], [156, 198], [373, 326]]
-
- boxes, classes, scores = [], [], []
- for input, mask in zip(input_data, masks):
- b, c, s = process(input, mask, anchors)
- b, c, s = filter_boxes(b, c, s)
- boxes.append(b)
- classes.append(c)
- scores.append(s)
-
- boxes = np.concatenate(boxes)
- boxes = xywh2xyxy(boxes)
- classes = np.concatenate(classes)
- scores = np.concatenate(scores)
-
- nboxes, nclasses, nscores = [], [], []
- for c in set(classes):
- inds = np.where(classes == c)
- b = boxes[inds]
- c = classes[inds]
- s = scores[inds]
-
- keep = nms_boxes(b, s)
-
- nboxes.append(b[keep])
- nclasses.append(c[keep])
- nscores.append(s[keep])
-
- if not nclasses and not nscores:
- return None, None, None
-
- boxes = np.concatenate(nboxes)
- classes = np.concatenate(nclasses)
- scores = np.concatenate(nscores)
-
- return boxes, classes, scores
主要是阈值过滤(filter_boxes)和NMS(nms_boxes)两部分。
①使用yolov5提供的export.py函数导出yolov5.onnx模型
python export.py --weights yolov5s.pt --img-size 640 --include onnx --train
②再使用onnxsim简化导出的yolov5.onnx模型
onnxsim安装和使用:onnx-simplifier
③要完全使用rknn提供的部署转换代码,需要根据简化后的onnx模型,选取合适层的输出,以替代以下代码中的‘378’,‘439’和‘500’,如下图onnx例子中的'326',‘346’,‘366’.
ret = rknn.load_onnx(model=ONNX_MODEL, outputs=['378', '439', '500'])
上图中onnx模型的下载地址: code:q2dl
未完待续!
①错误:E build: ImportError: /lib/x86_64-linux-gnu/libm.so.6: version `GLIBC_2.29' not found
解决方法:
- #解决方法
- wget http://ftp.gnu.org/gnu/glibc/glibc-2.29.tar.gz (建议手动下载)
-
- tar -zxvf glibc-2.29.tar.gz
- cd glibc-2.29
- sudo apt-get install bison
- sudo apt-get install
- sudo apt-get install gcc build-essential
-
- unset LD_LIBRARY_PATH
- mkdir build
- cd build
- ../configure --prefix=/usr/local/glibc-2.29
- make -j8
- sudo make install
-
- cd /lib/x86_64-linux-gnu
- sudo ln -sf /usr/local/glibc-2.29/lib/libm-2.29.so libm.so.6 # 建立软连接
未完待续!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。