赞
踩
巴特沃斯滤波器(英语:Butterworth Filter),也被称作最大平坦滤波器,是一种通频带之频率响应曲线平坦无纹波的信号处理滤波器,最先由英国工程师、物理学家史蒂芬·巴特沃斯提出。
巴特沃斯滤波器对不同频率下的增益进行了设计,
n
n
n阶巴特沃斯滤波器的增益可以表示为(截止频率
ω
c
\omega_c
ωc):
∣
H
n
(
j
ω
)
∣
=
1
1
+
(
ω
ω
c
)
2
n
⇔
∣
H
n
(
j
ω
)
∣
2
=
1
1
+
(
ω
ω
c
)
2
n
\left| {{H_n}\left( {j\omega } \right)} \right| = \frac{1}{{\sqrt {1 + {{\left( {\frac{\omega }{{{\omega _c}}}} \right)}^{2n}}} }}\Leftrightarrow {\left| {{H_n}\left( {j\omega } \right)} \right|^2} = \frac{1}{{1 + {{\left( {\frac{\omega }{{{\omega _c}}}} \right)}^{2n}}}}
∣Hn(jω)∣=1+(ωcω)2n
1⇔∣Hn(jω)∣2=1+(ωcω)2n1
上述表达式仅对幅频特性进行了描述,我们更希望得到传递函数形式的表达式,从而兼具幅频特性和相频特性,考虑到
H
n
(
j
ω
)
‾
=
H
n
(
−
j
ω
)
\overline {{H_n}\left( {j\omega } \right)} = {H_n}\left( { - j\omega } \right)
Hn(jω)=Hn(−jω),于是有:
{
H
n
(
s
)
H
n
(
−
s
)
=
H
n
(
j
ω
)
H
n
(
−
j
ω
)
=
H
n
(
j
ω
)
H
n
(
j
ω
)
‾
=
∣
H
n
(
j
ω
)
∣
2
=
1
1
+
(
ω
ω
c
)
2
n
=
1
1
+
(
j
ω
j
ω
c
)
2
n
=
1
1
+
(
s
j
ω
c
)
2
n
=
1
1
+
(
−
s
2
ω
c
2
)
n
\left\{
进一步求解
H
n
(
s
)
H_n(s)
Hn(s)的具体表达式,假设
H
n
(
s
)
H_n(s)
Hn(s)的
n
n
n个极点分别为
s
1
,
s
2
,
.
.
.
,
s
n
s_1,s_2,...,s_n
s1,s2,...,sn,则
H
n
(
−
s
)
H_n(-s)
Hn(−s)的
n
n
n个极点为相应的负对称点,
−
s
1
=
s
1
e
j
π
,
−
s
2
=
s
2
e
j
π
,
.
.
.
,
−
s
n
=
s
n
e
j
π
- {s_1} = {s_1}{e^{j\pi }}, - {s_2} = {s_2}{e^{j\pi }},..., - {s_n} = {s_n}{e^{j\pi }}
−s1=s1ejπ,−s2=s2ejπ,...,−sn=snejπ。一般地,
H
n
(
s
)
H_n(s)
Hn(s)和
H
n
(
−
s
)
H_n(-s)
Hn(−s)可以写作:
{
H
n
(
s
)
=
1
(
1
−
s
s
1
)
(
1
−
s
s
2
)
⋅
⋅
⋅
(
1
−
s
s
n
)
H
n
(
−
s
)
=
1
(
1
−
s
s
1
e
j
π
)
(
1
−
s
s
2
e
j
π
)
⋅
⋅
⋅
(
1
−
s
s
n
e
j
π
)
\left\{
显然,
s
1
,
s
2
,
.
.
.
,
s
n
s_1,s_2,...,s_n
s1,s2,...,sn和
s
1
e
j
π
,
s
2
e
j
π
,
.
.
.
,
s
n
e
j
π
{s_1}{e^{j\pi }},{s_2}{e^{j\pi }},...,{s_n}{e^{j\pi }}
s1ejπ,s2ejπ,...,snejπ也构成
H
n
(
s
)
H
n
(
−
s
)
H_n\left( s \right)H_n\left( { - s} \right)
Hn(s)Hn(−s)的
2
n
2n
2n个极点。因此,可以通过求解
H
n
(
s
)
H
n
(
−
s
)
H_n\left( s \right)H_n\left( { - s} \right)
Hn(s)Hn(−s)的全部极值点,选择其中
n
n
n个左半平面极值点,构成
H
n
(
s
)
H_n\left( s \right)
Hn(s)。选左半平面极值点可以保证
H
n
(
s
)
H_n(s)
Hn(s)的稳定性,剩余的
n
n
n个右半平面的极值点对应
H
n
(
−
s
)
H_n(-s)
Hn(−s)函数。
以下对
H
n
(
s
)
H
n
(
−
s
)
H_n\left( s \right)H_n\left( { - s} \right)
Hn(s)Hn(−s)的极值点进行求解:
{
(
−
s
2
ω
c
2
)
n
=
−
1
=
e
j
(
2
k
−
1
)
π
→
−
s
2
ω
c
2
=
e
j
(
2
k
−
1
)
π
n
→
s
2
ω
c
2
=
e
j
(
2
k
+
n
−
1
)
π
n
→
s
=
±
ω
c
e
j
(
2
k
+
n
−
1
)
π
2
n
,
k
=
1
,
2
,
.
.
.
,
n
\left\{
求解1~8阶巴特沃斯滤波器的传递函数,列于下表。如有离散化需求,请参考:传递函数离散化方法。
阶数 | 极值点 | 传递函数 |
---|---|---|
n = 1 n = 1 n=1 | s 1 = ω c e j π s_1 = {\omega_c e^{j\pi }} s1=ωcejπ | H 1 ( s ) = 1 1 − s ω c e j π = 1 1 + s ω c {H_1}\left( s \right) = \frac{1}{{1 - \frac{s}{{{\omega _c}{e^{j\pi }}}}}} = \frac{1}{{1 + \frac{s}{{{\omega _c}}}}} H1(s)=1−ωcejπs1=1+ωcs1 |
n = 2 n = 2 n=2 | s 1 = ω c e j 3 π 4 , s 2 = ω c e j 5 π 4 s_1 = {\omega_ce^{\frac{{j3\pi }}{4}}},s_2 = {\omega_c e^{\frac{{j5\pi }}{4}}} s1=ωce4j3π,s2=ωce4j5π | H 2 ( s ) = 1 1 − s ω c e j 3 π 4 1 1 − s ω c e j 5 π 4 = 1 1 + 2 s ω c + ( s ω c ) 2 {H_2}\left( s \right) = \frac{1}{{1 - \frac{s}{{{\omega _c}{e^{\frac{{j3\pi }}{4}}}}}}}\frac{1}{{1 - \frac{s}{{{\omega _c}{e^{\frac{{j5\pi }}{4}}}}}}} = \frac{1}{{1 + \sqrt 2 \frac{s}{{{\omega _c}}} + {{\left( {\frac{s}{{{\omega _c}}}} \right)}^2}}} H2(s)=1−ωce4j3πs11−ωce4j5πs1=1+2 ωcs+(ωcs)21 |
n = 3 n = 3 n=3 | s 1 = ω c e j 2 π 3 , s 2 = ω c e j π , s 3 = ω c e j 4 π 3 s_1 = {\omega_ce^{\frac{{j2\pi }}{3}}},s_2 = {\omega_c e^{j\pi }},s_3 = {\omega_c e^{\frac{{j4\pi }}{3}}} s1=ωce3j2π,s2=ωcejπ,s3=ωce3j4π | H 3 ( s ) = 1 ( 1 + s ω c ) ( 1 + s ω c + ( s ω c ) 2 ) {H_3}\left( s \right) = \frac{1}{{\left( {1 + \frac{s}{{{\omega _c}}}} \right)\left( {1 + \frac{s}{{{\omega _c}}} + {{\left( {\frac{s}{{{\omega _c}}}} \right)}^2}} \right)}} H3(s)=(1+ωcs)(1+ωcs+(ωcs)2)1 |
n = 4 n = 4 n=4 | s 1 = ω c e j 5 π 8 , s 2 = ω c e j 7 π 8 , s 3 = ω c e j 9 π 8 , s 4 = ω c e j 11 π 8 s_1 = {\omega_ce^{\frac{{j5\pi }}{8}}},s_2 = {\omega_c e^{\frac{{j7\pi }}{8}}},s_3 = {\omega_c e^{\frac{{j9\pi }}{8}}},s_4 = {\omega_c e^{\frac{{j11\pi }}{8}}} s1=ωce8j5π,s2=ωce8j7π,s3=ωce8j9π,s4=ωce8j11π | H 4 ( s ) = 1 ( ( s ω c ) 2 + 0.7654 s ω c + 1 ) ( ( s ω c ) 2 + 1.8478 s ω c + 1 ) {H_4}\left( s \right) = \frac{1}{{\left( {{{\left( {\frac{s}{{{\omega _c}}}} \right)}^2} + 0.7654\frac{s}{{{\omega _c}}} + 1} \right)\left( {{{\left( {\frac{s}{{{\omega _c}}}} \right)}^2} + 1.8478\frac{s}{{{\omega _c}}} + 1} \right)}} H4(s)=((ωcs)2+0.7654ωcs+1)((ωcs)2+1.8478ωcs+1)1 |
n = 5 n = 5 n=5 | ω c e j 6 π 10 , ω c e j 8 π 10 , ω c e j 10 π 10 , ω c e j 12 π 10 , ω c e j 14 π 10 {\omega _c}{e^{\frac{{j6\pi }}{{10}}}},{\omega _c}{e^{\frac{{j8\pi }}{{10}}}},{\omega _c}{e^{\frac{{j10\pi }}{{10}}}},{\omega _c}{e^{\frac{{j12\pi }}{{10}}}},{\omega _c}{e^{\frac{{j14\pi }}{{10}}}} ωce10j6π,ωce10j8π,ωce10j10π,ωce10j12π,ωce10j14π | H 5 ( s ) = 1 ( s ω c + 1 ) ( ( s ω c ) 2 + 0.6180 s ω c + 1 ) ( ( s ω c ) 2 + 1.6180 s ω c + 1 ) {H_5}\left( s \right) = \frac{1}{{\left( {\frac{s}{{{\omega _c}}} + 1} \right)\left( {{{\left( {\frac{s}{{{\omega _c}}}} \right)}^2} + 0.6180\frac{s}{{{\omega _c}}} + 1} \right)\left( {{{\left( {\frac{s}{{{\omega _c}}}} \right)}^2} + 1.6180\frac{s}{{{\omega _c}}} + 1} \right)}} H5(s)=(ωcs+1)((ωcs)2+0.6180ωcs+1)((ωcs)2+1.6180ωcs+1)1 |
n = 6 n = 6 n=6 | ω c e j 7 π 12 , ω c e j 9 π 12 , ω c e j 11 π 12 , ω c e j 13 π 12 , ω c e j 15 π 12 , ω c e j 17 π 12 {\omega _c}{e^{\frac{{j7\pi }}{{12}}}},{\omega _c}{e^{\frac{{j9\pi }}{{12}}}},{\omega _c}{e^{\frac{{j11\pi }}{{12}}}},{\omega _c}{e^{\frac{{j13\pi }}{{12}}}},{\omega _c}{e^{\frac{{j15\pi }}{{12}}}},{\omega _c}{e^{\frac{{j17\pi }}{{12}}}} ωce12j7π,ωce12j9π,ωce12j11π,ωce12j13π,ωce12j15π,ωce12j17π | H 6 ( s ) = 1 ( ( s ω c ) 2 + 0.5176 s ω c + 1 ) ( ( s ω c ) 2 + 1.414 s ω c + 1 ) ( ( s ω c ) 2 + 1.9318 s ω c + 1 ) {H_6}\left( s \right) = \frac{1}{{\left( {{{\left( {\frac{s}{{{\omega _c}}}} \right)}^2} + 0.5176\frac{s}{{{\omega _c}}} + 1} \right)\left( {{{\left( {\frac{s}{{{\omega _c}}}} \right)}^2} + 1.414\frac{s}{{{\omega _c}}} + 1} \right)\left( {{{\left( {\frac{s}{{{\omega _c}}}} \right)}^2} + 1.9318\frac{s}{{{\omega _c}}} + 1} \right)}} H6(s)=((ωcs)2+0.5176ωcs+1)((ωcs)2+1.414ωcs+1)((ωcs)2+1.9318ωcs+1)1 |
n = 7 n = 7 n=7 | ω c e j 8 π 14 , ω c e j 10 π 14 , ω c e j 12 π 14 , ω c e j 14 π 14 , ω c e j 16 π 14 , ω c e j 18 π 14 , ω c e j 20 π 14 {\omega _c}{e^{\frac{{j8\pi }}{{14}}}},{\omega _c}{e^{\frac{{j10\pi }}{{14}}}},{\omega _c}{e^{\frac{{j12\pi }}{{14}}}},{\omega _c}{e^{\frac{{j14\pi }}{{14}}}},{\omega _c}{e^{\frac{{j16\pi }}{{14}}}},{\omega _c}{e^{\frac{{j18\pi }}{{14}}}},{\omega _c}{e^{\frac{{j20\pi }}{{14}}}} ωce14j8π,ωce14j10π,ωce14j12π,ωce14j14π,ωce14j16π,ωce14j18π,ωce14j20π | H 7 ( s ) = 1 ( s ω c + 1 ) ( ( s ω c ) 2 + 0.4450 s ω c + 1 ) ( ( s ω c ) 2 + 1.247 s ω c + 1 ) ( ( s ω c ) 2 + 1.8022 s ω c + 1 ) {H_7}\left( s \right) = \frac{1}{{\left( {\frac{s}{{{\omega _c}}} + 1} \right)\left( {{{\left( {\frac{s}{{{\omega _c}}}} \right)}^2} + 0.4450\frac{s}{{{\omega _c}}} + 1} \right)\left( {{{\left( {\frac{s}{{{\omega _c}}}} \right)}^2} + 1.247\frac{s}{{{\omega _c}}} + 1} \right)\left( {{{\left( {\frac{s}{{{\omega _c}}}} \right)}^2} + 1.8022\frac{s}{{{\omega _c}}} + 1} \right)}} H7(s)=(ωcs+1)((ωcs)2+0.4450ωcs+1)((ωcs)2+1.247ωcs+1)((ωcs)2+1.8022ωcs+1)1 |
n = 8 n = 8 n=8 | ω c e j 9 π 16 , ω c e j 11 π 16 , ω c e j 13 π 16 , ω c e j 15 π 16 , ω c e j 17 π 16 , ω c e j 19 π 16 , ω c e j 21 π 16 , ω c e j 23 π 16 {\omega _c}{e^{\frac{{j9\pi }}{{16}}}},{\omega _c}{e^{\frac{{j11\pi }}{{16}}}},{\omega _c}{e^{\frac{{j13\pi }}{{16}}}},{\omega _c}{e^{\frac{{j15\pi }}{{16}}}},{\omega _c}{e^{\frac{{j17\pi }}{{16}}}},{\omega _c}{e^{\frac{{j19\pi }}{{16}}}},{\omega _c}{e^{\frac{{j21\pi }}{{16}}}},{\omega _c}{e^{\frac{{j23\pi }}{{16}}}} ωce16j9π,ωce16j11π,ωce16j13π,ωce16j15π,ωce16j17π,ωce16j19π,ωce16j21π,ωce16j23π | H 8 ( s ) = 1 ( ( s ω c ) 2 + 0.3986 s ω c + 1 ) ( ( s ω c ) 2 + 1.111 s ω c + 1 ) ( ( s ω c ) 2 + 1.6630 s ω c + 1 ) ( ( s ω c ) 2 + 1.9622 s ω c + 1 ) {H_8}\left( s \right) = \frac{1}{{\left( {{{\left( {\frac{s}{{{\omega _c}}}} \right)}^2} + 0.3986\frac{s}{{{\omega _c}}} + 1} \right)\left( {{{\left( {\frac{s}{{{\omega _c}}}} \right)}^2} + 1.111\frac{s}{{{\omega _c}}} + 1} \right)\left( {{{\left( {\frac{s}{{{\omega _c}}}} \right)}^2} + 1.6630\frac{s}{{{\omega _c}}} + 1} \right)\left( {{{\left( {\frac{s}{{{\omega _c}}}} \right)}^2} + 1.9622\frac{s}{{{\omega _c}}} + 1} \right)}} H8(s)=((ωcs)2+0.3986ωcs+1)((ωcs)2+1.111ωcs+1)((ωcs)2+1.6630ωcs+1)((ωcs)2+1.9622ωcs+1)1 |
% 设置频率范围 w = logspace(-1, 1, 1000); % 设置截止频率 wc = 1; % 定义各阶巴特沃斯滤波器的传递函数 H1 = 1 ./ (1 + 1j*w/wc); H2 = 1 ./ (1 + sqrt(2)*1j*w/wc + (1j*w/wc).^2); H3 = 1 ./ ((1 + 1j*w/wc) .* (1 + 1j*w/wc + (1j*w/wc).^2)); H4 = 1 ./ ((1 + 0.7654*1j*w/wc + (1j*w/wc).^2) .* (1 + 1.8478*1j*w/wc + (1j*w/wc).^2)); H5 = 1 ./ ((1 + 1j*w/wc) .* (1 + 0.6180*1j*w/wc + (1j*w/wc).^2) .* (1 + 1.6180*1j*w/wc + (1j*w/wc).^2)); H6 = 1 ./ ((1 + 0.5176*1j*w/wc + (1j*w/wc).^2) .* (1 + 1.414*1j*w/wc + (1j*w/wc).^2) .* (1 + 1.9318*1j*w/wc + (1j*w/wc).^2)); H7 = 1 ./ ((1 + 1j*w/wc) .* (1 + 0.4450*1j*w/wc + (1j*w/wc).^2) .* (1 + 1.247*1j*w/wc + (1j*w/wc).^2) .* (1 + 1.8022*1j*w/wc + (1j*w/wc).^2)); H8 = 1 ./ ((1 + 0.3986*1j*w/wc + (1j*w/wc).^2) .* (1 + 1.111*1j*w/wc + (1j*w/wc).^2) .* (1 + 1.6630*1j*w/wc + (1j*w/wc).^2) .* (1 + 1.9622*1j*w/wc + (1j*w/wc).^2)); % 绘制波特图 figure; subplot(2, 1, 1); semilogx(w, 20*log10(abs(H1)), 'DisplayName', '1st Order'); hold on; semilogx(w, 20*log10(abs(H2)), 'DisplayName', '2nd Order', 'LineWidth', 2); semilogx(w, 20*log10(abs(H3)), 'DisplayName', '3rd Order'); semilogx(w, 20*log10(abs(H4)), 'DisplayName', '4th Order', 'LineWidth', 2); semilogx(w, 20*log10(abs(H5)), 'DisplayName', '5th Order'); semilogx(w, 20*log10(abs(H6)), 'DisplayName', '6th Order', 'LineWidth', 3); semilogx(w, 20*log10(abs(H7)), 'DisplayName', '7th Order'); semilogx(w, 20*log10(abs(H8)), 'DisplayName', '8th Order', 'LineWidth', 3); hold off; title('Magnitude Response'); xlabel('Frequency (rad/s)'); ylabel('Magnitude (dB)'); legend; grid on; ylim([-160, 20]); % 设置幅值 y 轴的限制 subplot(2, 1, 2); semilogx(w, angle(H1), 'DisplayName', '1st Order'); hold on; semilogx(w, angle(H2), 'DisplayName', '2nd Order', 'LineWidth', 2); semilogx(w, angle(H3), 'DisplayName', '3rd Order'); semilogx(w, angle(H4), 'DisplayName', '4th Order', 'LineWidth', 2); semilogx(w, angle(H5), 'DisplayName', '5th Order'); semilogx(w, angle(H6), 'DisplayName', '6th Order', 'LineWidth', 3); semilogx(w, angle(H7), 'DisplayName', '7th Order'); semilogx(w, angle(H8), 'DisplayName', '8th Order', 'LineWidth', 3); hold off; title('Phase Response'); xlabel('Frequency (rad/s)'); ylabel('Phase (radians)'); legend; grid on;
参考1:巴特沃斯,维基百科
参考2:传递函数离散化方法
参考3:信号无失真传输,理想滤波器
参考4:巴特沃斯,CSDN
参考5:巴特沃斯,CSDN
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。