赞
踩
目录
窗口函数可以拆分为【窗口+函数】。窗口函数官网指路:LanguageManual WindowingAndAnalytics - Apache Hive - Apache Software Foundationhttps://cwiki.apache.org/confluence/display/Hive/LanguageManual+WindowingAndAnalytics
- from ->
- join ->
- on ->
- where ->
- group by->
- with (可以在分组后面加上 with rollup,在分组之后对每个组进行全局汇总) ->
- select 后面的普通字段,聚合函数->
- having(having中可以使用select 字段别名) ->
- distinct ->
- order by ->
- limit
<窗口函数>window_name over ( [partition by 字段...] [order by 字段...] [窗口子句] )
- rows between unbounded preceding and unbounded following; -- 上无边界到下无边界(一般用于求 总和)
- rows between unbounded preceding and current row; --上无边界到当前记录(累计值)
- rows between 1 preceding and current row; --从上一行到当前行
- rows between 1 preceding and 1 following; --从上一行到下一行
- rows between current row and 1 following; --从当前行到下一行
ps: over()里面有order by子句,但没有窗口子句时 ,即: <窗口函数> over ( partition by 字段... order by 字段... ),此时窗口子句是有默认值的-> rows between unbounded preceding and current row (上无边界到当前行)。
此时窗口函数语法:<窗口函数> over ( partition by 字段... order by 字段... ) 等价于
<窗口函数> over ( partition by 字段... order by 字段... rows between unbounded preceding and current row)
需要注意有个特殊情况:当order by 后面跟的某个字段是有重复行的时候, <窗口函数> over ( partition by 字段... order by 字段... ) 不写窗口子句的情况下,窗口子句的默认值是:range between unbounded preceding and current row(上无边界到当前相同行的最后一行)。
因此,遇到order by 后面跟的某个字段出现重复行,且需要计算【上无边界到当前行】,那就需要手动指定 窗口子句 rows between unbounded preceding and current row ,偷懒省略窗口子句会出问题~
总结如下:
- 1、窗口子句不能单独出现,必须有order by子句时才能出现。
- 2、当省略窗口子句时:
- a) 如果存在order by则默认的窗口是unbounded preceding and current row --当前组的第一行到当前行,即在当前组中,第一行到当前行
- b) 如果没有order by则默认的窗口是unbounded preceding and unbounded following --整个组
ps: 窗口函数的执行顺序是在where之后,所以如果where子句需要用窗口函数作为条件,需要多一层查询,在子查询外面进行。
【例如】求出登录记录出现间断的用户Id
- select
- id
- from (
- select
- id,
- login_date,
- lead(login_date, 1, '9999-12-31')
- over (partition by id order by login_date) next_login_date
- --窗口函数 lead(向后取n行)
- --lead(column1,n,default)over(partition by column2 order by column3) 查询当前行的后边第n行数据,如果没有就为null
- from (--用户在同一天可能登录多次,需要去重
- select
- id,
- date_format(`date`, 'yyyy-MM-dd') as login_date
- from user_log
- group by id, date_format(`date`, 'yyyy-MM-dd')
- ) tmp1
- ) tmp2
- where datediff(next_login_date, login_date) >=2
- group by id;
窗口函数本身也有执行顺序: <窗口函数>over ( partition by order by 窗口子句 )的执行顺序:over -> partition by -> order by -> 窗口子句 -> 函数
哪些函数可以是窗口函数呢?(放在over关键字前面的)
- sum(column) over (partition by .. order by .. 窗口子句);
- count(column) over (partition by .. order by .. 窗口子句);
- max(column) over (partition by .. order by .. 窗口子句);
- min(column) over (partition by .. order by .. 窗口子句);
- avg(column) over (partition by .. order by .. 窗口子句);
需要注意:
- 1.count(*)操作时会统计null值,count(column)会过滤掉null值;
- 2.事实上除了count(*)计算,剩余的聚合函数例如: max(column),min(column),avg(column),count(column) 函数会过滤掉null值
ps : 高级聚合函数:
collect_list 收集并形成list集合,结果不去重;
collect_set 收集并形成set集合,结果去重;
举例:
- --每个月的入职人数以及姓名
-
- select
- month(replace(hiredate,'/','-')),
- count(*) as cnt,
- collect_list(name) as name_list
- from employee
- group by month(replace(hiredate,'/','-'));
-
-
- /*
- 输出结果
- month cn name_list
- 4 2 ["宋青书","周芷若"]
- 6 1 ["黄蓉"]
- 7 1 ["郭靖"]
- 8 2 ["张无忌","杨过"]
- 9 2 ["赵敏","小龙女"]
- */
rank() 、row_number() 、dense_rank() 函数不支持自定义窗口子句。
- -- 顺序排序——1、2、3
- row_number() over(partition by .. order by .. )
-
- -- 并列排序,跳过重复序号——1、1、3(横向加)
- rank() over(partition by .. order by .. )
-
- -- 并列排序,不跳过重复序号——1、1、2(纵向加)
- dense_rank() over(partition by .. order by .. )
- -- 取得column列前边的第n行数据,如果存在则返回,如果不存在,返回默认值default
- lag(column,n,default) over(partition by order by) as lag_test
- -- 取得column列后边的第n行数据,如果存在则返回,如果不存在,返回默认值default
- lead(column,n,default) over(partition by order by) as lead_test
- ---当前窗口column列的第一个数值,如果有null值,则跳过
- first_value(column,true) over (partition by ..order by.. 窗口子句)
-
- ---当前窗口column列的第一个数值,如果有null值,不跳过
- first_value(column,false) over (partition by ..order by.. 窗口子句)
-
- --- 当前窗口column列的最后一个数值,如果有null值,则跳过
- last_value(column,true) over (partition by ..order by.. 窗口子句)
-
- --- 当前窗口column列的最后一个数值,如果有null值,不跳过
- last_value(column,false) over (partition by ..order by.. 窗口子句)
-
lead和lag函数,这两个函数一般用于计算差值,上面已介绍其语法。lag和lead函数不支持自定义窗口子句。
- -- 取得column列前边的第n行数据,如果存在则返回,如果不存在,返回默认值default
- lag(column,n,default) over(partition by order by) as lag_test
- -- 取得column列后边的第n行数据,如果存在则返回,如果不存在,返回默认值default
- lead(column,n,default) over(partition by order by) as lead_test
求股票的波峰Crest 和 波谷trough
- 波峰:当天的股票价格大于前一天和后一天
- 波谷:当天的股票价格小于前一天和后一天
- create table if not exists table2
- (
- id int comment '股票id',
- dt string comment '日期',
- price int comment '价格'
- )
- comment '股票价格波动信息';
-
- insert overwrite table table2 values
- (1,'2019-01-01',10001),
- (1,'2019-01-03',1001),
- (1,'2019-01-02',1001),
- (1,'2019-01-04',1000),
- (1,'2019-01-05',1002),
- (1,'2019-01-06',1003),
- (1,'2019-01-07',1004),
- (1,'2019-01-08',998),
- (1,'2019-01-09',997),
- (2,'2019-01-01',1002),
- (2,'2019-01-02',1003),
- (2,'2019-01-03',1004),
- (2,'2019-01-04',998),
- (2,'2019-01-05',999),
- (2,'2019-01-06',997),
- (2,'2019-01-07',996);
此题容易理解,利用lag()和lead()函数便可以解决。
- select
- id,
- dt,
- price,
- case
- when price > lag_price and price > lead_price then 'crest'
- when price < lag_price and price < lead_price then 'trough'
- end as price_type
- from (
- select
- id,
- dt,
- price,
- lag(price, 1) over (partition by id order by dt) as lag_price,
- lead(price, 1) over (partition by id order by dt) as lead_price
- from table2
- ) tmp1;
lead和lag函数一般用于计算当前行与上一行,或者当前行与下一行之间的差值。在用户间断登陆问题中也遇到过此函数。指路:HiveSQL题——用户连续登陆-CSDN博客文章浏览阅读220次,点赞4次,收藏3次。HiveSQL题——用户连续登陆https://blog.csdn.net/SHWAITME/article/details/135900251?spm=1001.2014.3001.5501
表temp包含A,B 两列,使用SQL对该B列进行处理,形成C列。按照A列顺序,B列值不变,C列累计技术 B列值变化,则C列重新开始计数,如图所示
- with table4 as (
- select 2010 as A,1 as B
- union all
- select 2011 as A,1 as B
- union all
- select 2012 as A,1 as B
- union all
- select 2013 as A,0 as B
- union all
- select 2014 as A,0 as B
- union all
- select 2015 as A,1 as B
- union all
- select 2016 as A,1 as B
- union all
- select 2017 as A,1 as B
- union all
- select 2018 as A,0 as B
- union all
- select 2019 as A,0 as B
- )
- with table4 as (
- select 2010 as A,1 as B
- union all
- select 2011 as A,1 as B
- union all
- select 2012 as A,1 as B
- union all
- select 2013 as A,0 as B
- union all
- select 2014 as A,0 as B
- union all
- select 2015 as A,1 as B
- union all
- select 2016 as A,1 as B
- union all
- select 2017 as A,1 as B
- union all
- select 2018 as A,0 as B
- union all
- select 2019 as A,0 as B
- )
-
- select
- A,
- B,
- row_number() over (partition by T order by A) as C
- from (
- select
- A,
- B,
- --over (order by A) 本质是 :over(order by rows between unbounded preceding and current row )
- --省略的是:上无边界到当前行
- sum(change) over (order by A) T
- from (
- select
- A,
- B,
- -- 向上取一行,取不到的记为0
- lag(B, 1, 0) over (order by A) as Lag,
- case
- when B <> lag(B, 1, 0) over (order by A) then 1
- else 0
- end as change
- from table4
- ) tmp1
- ) tmp2;
lead /lag函数常用于差值计算。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。