赞
踩
维度建模(dimensional modeling)是专门用于分析型数据库、数据仓库、数据集市建模的方法。
它本身属于一种关系建模方法,但和在操作型数据库中介绍的关系建模方法相比增加了两个概念:
1. 维度表(dimension)
表示对分析主题所属类型的描述。比如"昨天早上张三在京东花费200元购买了一个皮包"。那么以购买为主题进行分析,可从这段信息中提取三个维度:时间维度(昨天早上),地点维度(京东), 商品维度(皮包)。通常来说维度表信息比较固定,且数据量小。
2. 事实表(fact table)
表示对分析主题的度量。比如上面那个例子中,200元就是事实信息。事实表包含了与各维度表相关联的外码,并通过JOIN方式与维度表关联。事实表的度量通常是数值类型,且记录数会不断增加,表规模迅速增长。
1. 星形模式
星形模式(Star Schema)是最常用的维度建模方式,下图展示了使用星形模式进行维度建模的关系结构:
可以看出,星形模式的维度建模由一个事实表和一组维度表组成,且具有以下特点:
2. 雪花模式
雪花模式(Snowflake Schema)是对星形模式的扩展,每个维度表可继续向外连接多个子维度表。下图为使用雪花模式进行维度建模的关系结构:
星形模式中的维度表相对雪花模式来说要大,而且不满足规范化设计。雪花模型相当于将星形模式的大维度表拆分成小维度表,满足了规范化设计。然而这种模式在实际应用中很少见,因为这样做会导致开发难度增大,而数据冗余问题在数据仓库里并不严重。
3. 星座模式
星座模式(Fact Constellations Schema)也是星型模式的扩展。基于这种思想就有了星座模式:
前面介绍的两种维度建模方法都是多维表对应单事实表,但在很多时候维度空间内的事实表不止一个,而一个维表也可能被多个事实表用到。在业务发展后期,绝大部分维度建模都采用的是星座模式。
4. 三种模式对比
归纳一下,星形模式/雪花模式/星座模式的关系如下图所示:
雪花模式是将星型模式的维表进一步划分,使各维度表均满足规范化设计。而星座模式则是允许星形模式中出现多个事实表。
三、建模技巧
通常在需求搜集完毕后,便可进行维度建模了。Adventure Work Cycles案例即可采用星形模型维度建模。但不论采取何种模式,维度建模的关键在于明确下面四个问题:
1. 哪些维度对主题分析有用?
Adventure Work Cycles案例中,根据产品种类、销售区域、时间,对销售额、销量进行分析是非常有帮助的。
2. 如何使用现有数据生成维度表?
Adventure Work Cycles案例中,样本数据已经生成维度表。
3. 用什么指标来"度量"主题?
Adventure Work Cycles案例的主题是销售,而销量和销售额这两个指标最能直观反映销售情况,此外客单价、平均运费、平均税率等指标也可以进行分析。
4. 如何使用现有数据生成事实表?
Adventure Work Cycles案例中,样本数据已经生成事实表。
明确这四个问题后,便能轻松完成维度建模。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。