赞
踩
google官方推荐,当使用HashMap时,Key值为整数类型时,建议使用SparseArray的效率更高
下面我们来见识一下SparseArray、HashMap、ArrayMap的性能区别,首先我们先看一下google官方推荐的SparseArray,SparseArray是Android的API,JDK中没有的该类。
SparseArray的源码分析:
当我们在Android中使用HashMap<Integer, String>时,我们会看到编译器会弹如下提示:
大概意思就是建议我们使用SparseArray来代替HashMap<Integer, String>
SparseArray源码:(直接在代码中讲解)
public class SparseArray<E> implements Cloneable {
//用于删除元素的时候使用,当删除某个元素,我们需要将int-values中的values赋值为DELETED
private static final Object DELETED = new Object();
//判断此时是否需要垃圾回收(也就是数据是否需要重新整理,将数组中mValues值为DELETED的int-values从数组中删除掉)
private boolean mGarbage = false;
//存储索引集合.
private int[] mKeys;
//存储对象集合.
private Object[] mValues;
//存储的键值对总数.
private int mSize;
/**
* 创建默认大小为10
* Creates a new SparseArray containing no mappings.
*/
public SparseArray() {
this(10);
}
/**
* 初始化键值对
* Creates a new SparseArray containing no mappings that will not
* require any additional memory allocation to store the specified
* number of mappings. If you supply an initial capacity of 0, the
* sparse array will be initialized with a light-weight representation
* not requiring any additional array allocations.
*/
public SparseArray(int initialCapacity) {
//如果传入的值是0,则键值对都是empty,否则按照传入的值申请最初的数组大小
if (initialCapacity == 0) {
mKeys = ContainerHelpers.EMPTY_INTS;
mValues = ContainerHelpers.EMPTY_OBJECTS;
} else {
initialCapacity = ArrayUtils.idealIntArraySize(initialCapacity);
mKeys = new int[initialCapacity];
mValues = new Object[initialCapacity];
}
//键值对的总个数为0
mSize = 0;
}
//深拷贝,创建新的空间存储这些键值对
@Override
@SuppressWarnings("unchecked")
public SparseArray<E> clone() {
SparseArray<E> clone = null;
try {
clone = (SparseArray<E>) super.clone();
clone.mKeys = mKeys.clone();
clone.mValues = mValues.clone();
} catch (CloneNotSupportedException cnse) {
/* ignore */
}
return clone;
}
//通过键获取值
/**
* Gets the Object mapped from the specified key, or <code>null</code>
* if no such mapping has been made.
*/
public E get(int key) {
return get(key, null);
}
//通过键获取值,如果没有则返回valueIfKeyNotFound
/**
* Gets the Object mapped from the specified key, or the specified Object
* if no such mapping has been made.
*/
@SuppressWarnings("unchecked")
public E get(int key, E valueIfKeyNotFound) {
//它使用的是二分查找,提高查找效率
int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
if (i < 0 || mValues[i] == DELETED) {
return valueIfKeyNotFound;
} else {
return (E) mValues[i];
}
}
//删除第key个位置的数
/**
* Removes the mapping from the specified key, if there was any.
*/
public void delete(int key) {
//二分查找
int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
if (i >= 0) {
//确定删除的数,将其置为DELETED,然后将垃圾回收置为true
if (mValues[i] != DELETED) {
mValues[i] = DELETED;
mGarbage = true;
}
}
}
/**
* Alias for {@link #delete(int)}.
*/
public void remove(int key) {
delete(key);
}
/**
* Removes the mapping at the specified index.
*/
public void removeAt(int index) {
if (mValues[index] != DELETED) {
mValues[index] = DELETED;
mGarbage = true;
}
}
/**
* Remove a range of mappings as a batch.
*
* @param index Index to begin at
* @param size Number of mappings to remove
*/
public void removeAtRange(int index, int size) {
final int end = Math.min(mSize, index + size);
for (int i = index; i < end; i++) {
removeAt(i);
}
}
//垃圾回收方法
private void gc() {
// Log.e("SparseArray", "gc start with " + mSize);
int n = mSize;
int o = 0;
int[] keys = mKeys;
Object[] values = mValues;
for (int i = 0; i < n; i++) {
Object val = values[i];
if (val != DELETED) {
if (i != o) {
//最开始我被这儿给绕了一道
//Java中的除基本类型以外的数据使用“=”都是引用(如果没有重写的话)
//所以这儿可以通过这种方式改变对象数组的值
keys[o] = keys[i];
values[o] = val;
values[i] = null;
}
o++;
}
}
mGarbage = false;
mSize = o;
// Log.e("SparseArray", "gc end with " + mSize);
}
//向键值对中放值
/**
* Adds a mapping from the specified key to the specified value,
* replacing the previous mapping from the specified key if there
* was one.
*/
public void put(int key, E value) {
//二分查找
int i = ContainerHelpers.binarySearch(mKeys, mSize, key);
//如果这个键已经有了,否则没有
if (i >= 0) {
mValues[i] = value;
} else {
i = ~i;
//如果这个键值插入的地方已经被删除了,我们可以直接给他赋值,否则查询出的位置的元素没有被删除
if (i < mSize && mValues[i] == DELETED) {
mKeys[i] = key;
mValues[i] = value;
return;
}
//判断数组的大小是否大于等于数组初始化的大小,如果大并且其中有垃圾则调用垃圾回收方法
if (mGarbage && mSize >= mKeys.length) {
gc();
//再次二分查找,取出键值在数组的位置
// Search again because indices may have changed.
i = -ContainerHelpers.binarySearch(mKeys, mSize, key);
}
//如果数组的大小依旧大于等于初始化的大小,则申请一段mSize+1大小的数组
if (mSize >= mKeys.length) {
int n = ArrayUtils.idealIntArraySize(mSize + 1);
int[] nkeys = new int[n];
Object[] nvalues = new Object[n];
//表示将数组mKeys从0开始复制到数组nkeys从0开始,复制的长度为mKeys的长度
// Log.e("SparseArray", "grow " + mKeys.length + " to " + n);
System.arraycopy(mKeys, 0, nkeys, 0, mKeys.length);
System.arraycopy(mValues, 0, nvalues, 0, mValues.length);
mKeys = nkeys;
mValues = nvalues;
}
// i为插入位置,如果i<mSize,则i之后的元素需要依次向后移动一位.
if (mSize - i != 0) {
// Log.e("SparseArray", "move " + (mSize - i));
//将数组mKeys从i开始复制到mKeys从i+1开始,复制的长度为数组的长度减去当前插入的位置
System.arraycopy(mKeys, i, mKeys, i + 1, mSize - i);
System.arraycopy(mValues, i, mValues, i + 1, mSize - i);
}
mKeys[i] = key;
mValues[i] = value;
mSize++;
}
}
/**
* Returns the number of key-value mappings that this SparseArray
* currently stores.
*/
//返回数据的大小
public int size() {
if (mGarbage) {
gc();
}
return mSize;
}
/**
* Given an index in the range <code>0...size()-1</code>, returns
* the key from the <code>index</code>th key-value mapping that this
* SparseArray stores.
*
* <p>The keys corresponding to indices in ascending order are guaranteed to
* be in ascending order, e.g., <code>keyAt(0)</code> will return the
* smallest key and <code>keyAt(size()-1)</code> will return the largest
* key.</p>
*/
//返回当前第index个值的键是多少
public int keyAt(int index) {
if (mGarbage) {
gc();
}
return mKeys[index];
}
/**
* Given an index in the range <code>0...size()-1</code>, returns
* the value from the <code>index</code>th key-value mapping that this
* SparseArray stores.
*
* <p>The values corresponding to indices in ascending order are guaranteed
* to be associated with keys in ascending order, e.g.,
* <code>valueAt(0)</code> will return the value associated with the
* smallest key and <code>valueAt(size()-1)</code> will return the value
* associated with the largest key.</p>
*/
//返回当前index位置的值是多少
@SuppressWarnings("unchecked")
public E valueAt(int index) {
if (mGarbage) {
gc();
}
return (E) mValues[index];
}
/**
* Given an index in the range <code>0...size()-1</code>, sets a new
* value for the <code>index</code>th key-value mapping that this
* SparseArray stores.
*/
//给index位置的值设置为value
public void setValueAt(int index, E value) {
if (mGarbage) {
gc();
}
mValues[index] = value;
}
/**
* Returns the index for which {@link #keyAt} would return the
* specified key, or a negative number if the specified
* key is not mapped.
*/
//返回键为key的位置
public int indexOfKey(int key) {
if (mGarbage) {
gc();
}
return ContainerHelpers.binarySearch(mKeys, mSize, key);
}
/**
* Returns an index for which {@link #valueAt} would return the
* specified key, or a negative number if no keys map to the
* specified value.
* <p>Beware that this is a linear search, unlike lookups by key,
* and that multiple keys can map to the same value and this will
* find only one of them.
* <p>Note also that unlike most collections' {@code indexOf} methods,
* this method compares values using {@code ==} rather than {@code equals}.
*/
//返回值为value的位置
public int indexOfValue(E value) {
if (mGarbage) {
gc();
}
for (int i = 0; i < mSize; i++)
if (mValues[i] == value)
return i;
return -1;
}
/**
* Removes all key-value mappings from this SparseArray.
*/
//清除当前键值对
public void clear() {
int n = mSize;
Object[] values = mValues;
for (int i = 0; i < n; i++) {
values[i] = null;
}
mSize = 0;
mGarbage = false;
}
/**
* Puts a key/value pair into the array, optimizing for the case where
* the key is greater than all existing keys in the array.
*/
//在数组中插入键值对
public void append(int key, E value) {
if (mSize != 0 && key <= mKeys[mSize - 1]) {
put(key, value);
return;
}
if (mGarbage && mSize >= mKeys.length) {
gc();
}
int pos = mSize;
if (pos >= mKeys.length) {
int n = ArrayUtils.idealIntArraySize(pos + 1);
int[] nkeys = new int[n];
Object[] nvalues = new Object[n];
// Log.e("SparseArray", "grow " + mKeys.length + " to " + n);
System.arraycopy(mKeys, 0, nkeys, 0, mKeys.length);
System.arraycopy(mValues, 0, nvalues, 0, mValues.length);
mKeys = nkeys;
mValues = nvalues;
}
mKeys[pos] = key;
mValues[pos] = value;
mSize = pos + 1;
}
/**
* {@inheritDoc}
*
* <p>This implementation composes a string by iterating over its mappings. If
* this map contains itself as a value, the string "(this Map)"
* will appear in its place.
*/
//返回键值对
@Override
public String toString() {
if (size() <= 0) {
return "{}";
}
StringBuilder buffer = new StringBuilder(mSize * 28);
buffer.append('{');
for (int i=0; i<mSize; i++) {
if (i > 0) {
buffer.append(", ");
}
int key = keyAt(i);
buffer.append(key);
buffer.append('=');
Object value = valueAt(i);
if (value != this) {
buffer.append(value);
} else {
buffer.append("(this Map)");
}
}
buffer.append('}');
return buffer.toString();
}
}
SparseArry结构图解:
SparseArray只能存储当键为int的键值对,通过源码我们可以看到这儿键是int而不是Integer,所以SparseArray提高效率的方式是去箱的操作,因为键是int型数据,所以就不需要hash值的方式来存储数据,插入和查询都是通过二分查找的方式进行,插入数据时可能会存在大量的数据搬移。但是它避免了装箱,所以这时就要看数据量的大小来对比时间的快慢,如果数据少,即使数据搬移也不会很多,所以效率上SparseArray比HashMap要好,空间上装箱过后的Integer要比int占的空间要大,所以空间效率上SparseArray要比HashMap好!
HashMap结构图解:
HashMap的数据结构:
static class HashMapEntry<K, V> implements Entry<K, V> {
//键
final K key;
//值
V value;
//键生成的hash值
final int hash;
//如果Hash值一样,则它下一个键值对
HashMapEntry<K, V> next;
}
从数据结构中我们可以看出首先对key值求Hash值,如果该Hash值在Hash数组中不存在,则添加进去,如果存在,则跟着Hash值的链表在尾部添加上这个键值对,在时间效率方面,使用Hash算法,插入和查找的操作都很快,每个数组后面一般不会存在很长的链表,所以不考虑空间利用率,HashMap的效率是非常高的
ArrayMap的结构图解
当插入时,根据key的hashcode()方法得到hash值,计算出在mArrays的index位置,然后利用二分查找找到对应的位置进行插入,当出现哈希冲突时,会在index的相邻位置插入。
空间角度考虑,ArrayMap每存储一条信息,需要保存一个hash值,一个key值,一个value值。对比下HashMap 粗略的看,只是减少了一个指向下一个entity的指针。
时间效率上看,插入和查找的时候因为都用的二分法,查找的时候应该是没有hash查找快,插入的时候呢,如果顺序插入的话效率肯定高,但如果是随机插入,肯定会涉及到大量的数组搬移,数据量大,肯定不行,再想一下,如果是不凑巧,每次插入的hash值都比上一次的小,那就得次次搬移,效率一下就扛不住了的感脚。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。