当前位置:   article > 正文

Apache Spark分布式计算原理(超详细)_分布式计算的工作原理图。

分布式计算的工作原理图。

Spark WordCount运行原理
在这里插入图片描述

一、RDD的依赖关系

1.窄依赖
窄依赖就是指父RDD的每个分区只被一个子RDD分区使用,子RDD分区通常只对应常数个父RDD分区,如下图所示【其中每个小方块代表一个RDD Partition】

在这里插入图片描述

窄依赖有分为两种:

一种是一对一的依赖,即OneToOneDependency
还有一个是范围的依赖,即RangeDependency,它仅仅被org.apache.spark.rdd.UnionRDD使用。UnionRDD是把多个RDD合成一个RDD,这些RDD是被拼接而成,即每个parent RDD的Partition的相对顺序不会变,只不过每个parent RDD在UnionRDD中的Partition的起始位置不同
2.宽依赖
宽依赖就是指父RDD的每个分区都有可能被多个子RDD分区使用,子RDD分区通常对应父RDD所有分区,如下图所示【其中每个小方块代表一个RDD Partition】
在这里插入图片描述
3.窄依赖与窄依赖比较
宽依赖往往对应着shuffle操作,需要在运行的过程中将同一个RDD分区传入到不同的RDD分区中,中间可能涉及到多个节点之间数据的传输,而窄依赖的每个父RDD分区通常只会传入到另一个子RDD分区,通常在一个节点内完成。
当RDD分区丢失时,对于窄依赖来说,由于父RDD的一个分区只对应一个子RDD分区,这样只需要重新计算与子RDD分区对应的父RDD分区就行。这个计算对数据的利用是100%的
当RDD分区丢失时,对于宽依赖来说,重算的父RDD分区只有一部分数据是对应丢失的子RDD分区的,另一部分就造成了多余的计算。宽依赖中的子RDD分区通常来自多个父RDD分区,极端情况下,所有父RDD都有可能重新计算
在这里插入图片描述
结论:
相比于宽依赖,窄依赖对优化更有利

二、DAG工作原理

1.根据RDD之间的依赖关系,形成一个DAG(有向无环图)
2.DAGScheduler将DAG划分为多个Stage

  • 划分依据:是否发生宽依赖(Shuffle)
  • 划分规则:从后往前,遇到宽依赖切割为新的Stage
  • 每个Stage由一组并行的Task组成
    在这里插入图片描述

为什么需要划分Stage

数据本地化
移动计算,而不是移动数据(很慢)
保证一个Stage内不会发生数据移动
最佳实践
尽量避免Shuffle
提前部分聚合减少数据移动

Spark Shuffle过程

在分区之间重新分配数据

  • 父RDD中同一分区中的数据按照算子要求重新进入子RDD的不同分区中
  • 中间结果写入磁盘
  • 由子RDD拉取数据,而不是由父RDD推送
  • 默认情况下,Shuffle不会改变分区数量
    在这里插入图片描述

在这里插入图片描述

三、RDD优化

  • RDD持久化
  • RDD共享变量
  • RDD分区设计
  • 数据倾斜

1. RDD持久化:缓存机制

RDD缓存机制:缓存数据至内存/磁盘,可大幅度提升Spark应用性能
缓存应用场景:
1.从文件加载数据之后,因为重新获取文件成本较高
2.经过较多的算子变换之后,重新计算成本较高
3.单个非常消耗资源的算子之后
使用注意事项:
1.cache()或persist()后不能再有其他算子
2.cache()或persist()遇到Action算子完成后才生效

在这里插入图片描述
运行结果:在这里插入图片描述

2.RDD持久化-检查点:类似于快照

在这里插入图片描述
运行结果:在你指定的文件夹打开会生成分区文件
在这里插入图片描述

检查点与缓存的区别
1.检查点会删除RDD lineage,而缓存不会
2.SparkContext被销毁后,检查点数据不会被删除

3.RDD共享变量(广播变量)

广播变量:允许开发者将一个只读变量(Driver端)缓存到每个节点(Executor)上,而不是每个任务传递一个副本
注意事项:
1、Driver端变量在每个Executor每个Task保存一个变量副本
2、Driver端广播变量在每个Executor只保存一个变量副本
在这里插入图片描述
运行结果为:
在这里插入图片描述

4.RDD共享变量(累加器):实现计数

在这里插入图片描述

5.RDD分区设计

分区大小限制为2GB
分区太少

  • 不利于并发
  • 更容易受数据倾斜影响
  • groupBy, reduceByKey, sortByKey等内存压力增大

分区过多

  • Shuffle开销越大
  • 创建任务开销越大

经验

  • 每个分区大约128MB
  • 如果分区小于但接近2000,则设置为大于2000

6.数据倾斜

指分区中的数据分配不均匀,数据集中在少数分区中
严重影响性能
通常发生在groupBy,join等之后

在这里插入图片描述

四、数据倾斜的解决方案

解决方案一:使用Hive ETL预处理数据

方案适用场景:导致数据倾斜的是Hive表。如果该Hive表中的数据本身很不均匀(比如某个key对应了100万数据,其他key才对应了10条数据),而且业务场景需要频繁使用Spark对Hive表执行某个分析操作,那么比较适合使用这种技术方案。

方案实现思路:此时可以评估一下,是否可以通过Hive来进行数据预处理(即通过Hive ETL预先对数据按照key进行聚合,或者是预先和其他表进行join),然后在Spark作业中针对的数据源就不是原来的Hive表了,而是预处理后的Hive表。此时由于数据已经预先进行过聚合或join操作了,那么在Spark作业中也就不需要使用原先的shuffle类算子执行这类操作了。

方案实现原理:这种方案从根源上解决了数据倾斜,因为彻底避免了在Spark中执行shuffle类算子,那么肯定就不会有数据倾斜的问题了。但是这里也要提醒一下大家,这种方式属于治标不治本。因为毕竟数据本身就存在分布不均匀的问题,所以Hive ETL中进行group by或者join等shuffle操作时,还是会出现数据倾斜,导致Hive ETL的速度很慢。我们只是把数据倾斜的发生提前到了Hive ETL中,避免Spark程序发生数据倾斜而已。

方案优点:实现起来简单便捷,效果还非常好,完全规避掉了数据倾斜,Spark作业的性能会大幅度提升。

方案缺点:治标不治本,Hive ETL中还是会发生数据倾斜。

方案实践经验:在一些Java系统与Spark结合使用的项目中,会出现Java代码频繁调用Spark作业的场景,而且对Spark作业的执行性能要求很高,就比较适合使用这种方案。将数据倾斜提前到上游的Hive ETL,每天仅执行一次,只有那一次是比较慢的,而之后每次Java调用Spark作业时,执行速度都会很快,能够提供更好的用户体验。

项目实践经验:在美团·点评的交互式用户行为分析系统中使用了这种方案,该系统主要是允许用户通过Java Web系统提交数据分析统计任务,后端通过Java提交Spark作业进行数据分析统计。要求Spark作业速度必须要快,尽量在10分钟以内,否则速度太慢,用户体验会很差。所以我们将有些Spark作业的shuffle操作提前到了Hive ETL中,从而让Spark直接使用预处理的Hive中间表,尽可能地减少Spark的shuffle操作,大幅度提升了性能,将部分作业的性能提升了6倍以上。

解决方案二:过滤少数导致倾斜的key

方案适用场景:如果发现导致倾斜的key就少数几个,而且对计算本身的影响并不大的话,那么很适合使用这种方案。比如99%的key就对应10条数据,但是只有一个key对应了100万数据,从而导致了数据倾斜。

方案实现思路:如果我们判断那少数几个数据量特别多的key,对作业的执行和计算结果不是特别重要的话,那么干脆就直接过滤掉那少数几个key。比如,在Spark SQL中可以使用where子句过滤掉这些key或者在Spark Core中对RDD执行filter算子过滤掉这些key。如果需要每次作业执行时,动态判定哪些key的数据量最多然后再进行过滤,那么可以使用sample算子对RDD进行采样,然后计算出每个key的数量,取数据量最多的key过滤掉即可。

方案实现原理:将导致数据倾斜的key给过滤掉之后,这些key就不会参与计算了,自然不可能产生数据倾斜。

方案优点:实现简单,而且效果也很好,可以完全规避掉数据倾斜。

方案缺点:适用场景不多,大多数情况下,导致倾斜的key还是很多的,并不是只有少数几个。

方案实践经验:在项目中我们也采用过这种方案解决数据倾斜。有一次发现某一天Spark作业在运行的时候突然OOM了,追查之后发现,是Hive表中的某一个key在那天数据异常,导致数据量暴增。因此就采取每次执行前先进行采样,计算出样本中数据量最大的几个key之后,直接在程序中将那些key给过滤掉。

解决方案三:提高shuffle操作的并行度

方案适用场景:如果我们必须要对数据倾斜迎难而上,那么建议优先使用这种方案,因为这是处理数据倾斜最简单的一种方案。

方案实现思路:在对RDD执行shuffle算子时,给shuffle算子传入一个参数,比如reduceByKey(1000),该参数就设置了这个shuffle算子执行时shuffle read task的数量。对于Spark SQL中的shuffle类语句,比如group by、join等,需要设置一个参数,即spark.sql.shuffle.partitions,该参数代表了shuffle read task的并行度,该值默认是200,对于很多场景来说都有点过小。

方案实现原理:增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。举例来说,如果原本有5个key,每个key对应10条数据,这5个key都是分配给一个task的,那么这个task就要处理50条数据。而增加了shuffle read task以后,每个task就分配到一个key,即每个task就处理10条数据,那么自然每个task的执行时间都会变短了。具体原理如下图所示。

方案优点:实现起来比较简单,可以有效缓解和减轻数据倾斜的影响。

方案缺点:只是缓解了数据倾斜而已,没有彻底根除问题,根据实践经验来看,其效果有限。

方案实践经验:该方案通常无法彻底解决数据倾斜,因为如果出现一些极端情况,比如某个key对应的数据量有100万,那么无论你的task数量增加到多少,这个对应着100万数据的key肯定还是会分配到一个task中去处理,因此注定还是会发生数据倾斜的。所以这种方案只能说是在发现数据倾斜时尝试使用的第一种手段,尝试去用嘴简单的方法缓解数据倾斜而已,或者是和其他方案结合起来使用。

解决方案四:两阶段聚合(局部聚合+全局聚合)

方案适用场景:对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,比较适用这种方案。

方案实现思路:这个方案的核心实现思路就是进行两阶段聚合。第一次是局部聚合,先给每个key都打上一个随机数,比如10以内的随机数,此时原先一样的key就变成不一样的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就会变成(1_hello, 1) (1_hello, 1) (2_hello, 1) (2_hello, 1)。接着对打上随机数后的数据,执行reduceByKey等聚合操作,进行局部聚合,那么局部聚合结果,就会变成了(1_hello, 2) (2_hello, 2)。然后将各个key的前缀给去掉,就会变成(hello,2)(hello,2),再次进行全局聚合操作,就可以得到最终结果了,比如(hello, 4)。

方案实现原理:将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。具体原理见下图。

方案优点:对于聚合类的shuffle操作导致的数据倾斜,效果是非常不错的。通常都可以解决掉数据倾斜,或者至少是大幅度缓解数据倾斜,将Spark作业的性能提升数倍以上。

方案缺点:仅仅适用于聚合类的shuffle操作,适用范围相对较窄。如果是join类的shuffle操作,还得用其他的解决方案。

// 第一步,给RDD中的每个key都打上一个随机前缀。
JavaPairRDD<String, Long> randomPrefixRdd = rdd.mapToPair(
        new PairFunction<Tuple2<Long,Long>, String, Long>() {
            private static final long serialVersionUID = 1L;
            @Override
            public Tuple2<String
  • 1
  • 2
  • 3
  • 4
  • 5
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/686585
推荐阅读
相关标签
  

闽ICP备14008679号