赞
踩
import ChatGLM
from langchain.chains import LLMChain
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import SimpleSequentialChain
prompt = ChatPromptTemplate.from_template("What is the best name to describe a company that makes {product},please respond in chinese, must contian {a2}")
llm = ChatGLM.ChatGLM_LLM()
chain_one = LLMChain(
llm=llm,
prompt=prompt,
verbose=True
)
print(chain_one.invoke({"product":"shoes","a2":"深圳"}))
from langchain.prompts import PromptTemplate from langchain_core.prompts import ChatPromptTemplate import gradio as gr from langchain.chains import LLMChain from LLMs import myllm hf = myllm() template = """{question}""" prompt = PromptTemplate.from_template(template) chain = prompt | hf prompt = ChatPromptTemplate.from_template("What is the best name to describe a company that makes {product},please respond in chinese, must contian {words}") prompt2 = ChatPromptTemplate.from_template("{input}") llm = hf chain_one = LLMChain( llm=llm, prompt=prompt, verbose=False ) chain_one2 = LLMChain( llm=llm, prompt=prompt2, verbose=False ) chains = {"input": chain_one } | chain_one2 print(chains.invoke({"product":"shoes","words":"深圳"}))
@chain的使用
from langchain.prompts import PromptTemplate from langchain_core.prompts import ChatPromptTemplate import gradio as gr from langchain.chains import LLMChain from langchain_core.runnables import chain from langchain_core.output_parsers import StrOutputParser from LLMs import myllm hf = myllm() prompt = ChatPromptTemplate.from_template("What is the best name to describe a company that makes {product},please respond in chinese, must contian {words}") prompt2 = ChatPromptTemplate.from_template("{input}") llm = hf chain_one = LLMChain( llm=llm, prompt=prompt, verbose=False ) chain_one2 = LLMChain( llm=llm, prompt=prompt2, verbose=False ) @chain def myadd(name:str): print(name) # return "myadd" return name # chains = {"input": chain_one } | prompt2|llm | StrOutputParser() chains2 = {"input": chain_one } | chain_one2 | myadd # print(chains.invoke({"product":"shoes","words":"深圳"})) print(chains2.invoke({"product":"shoes","words":"北京"})) # print(chains.predict(product="shoes",words="深圳")) # print(chains.generate( # [ # {"product":"shoes","words":"深圳"}, # {"product":"shoes","words":"北京"}, # ] # ))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。