赞
踩
跟关系数据库的表(Table)一样,DataFrame是Spark中对带模式(schema)行列数据的抽象。DateFrame广泛应用于使用SQL处理大数据的各种场景。创建DataFrame有很多种方法,比如从本地List创建、从RDD创建或者从源数据创建,下面简要介绍创建DataFrame的三种方法。
toDF
函数创建DataFrame通过导入(importing)Spark sql implicits, 就可以将本地序列(seq), 数组或者RDD转为DataFrame。只要这些数据的内容能指定数据类型即可。
本地seq + toDF创建DataFrame示例:
- import sqlContext.implicits._
- val df = Seq(
- (1, "First Value", java.sql.Date.valueOf("2010-01-01")),
- (2, "Second Value", java.sql.Date.valueOf("2010-02-01"))
- ).toDF("int_column", "string_column", "date_column")
注意:如果直接用toDF()而不指定列名字,那么默认列名为"_1", "_2", ...
通过case class + toDF创建DataFrame的示例
- // sc is an existing SparkContext.
- val sqlContext = new org.apache.spark.sql.SQLContext(sc)
- // this is used to implicitly convert an RDD to a DataFrame.
- import sqlContext.implicits._
-
- // Define the schema using a case class.
- // Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,
- // you can use custom classes that implement the Product interface.
- case class Person(name: String, age: Int)
-
- // Create an RDD of Person objects and register it as a table.
- val people = sc.textFile("examples/src/main/resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF()
- people.registerTempTable("people")
-
- // 使用 sqlContext 执行 sql 语句.
- val teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19")
-
- // 注:sql()函数的执行结果也是DataFrame,支持各种常用的RDD操作.
- // The columns of a row in the result can be accessed by ordinal.
- teenagers.map(t => "Name: " + t(0)).collect().foreach(println)
createDataFrame
函数创建DataFrame在SqlContext
中使用createDataFrame也可以创建DataFrame。跟toDF
一样,这里创建DataFrame的数据形态也可以是本地数组或者RDD。
通过row+schema创建示例
- import org.apache.spark.sql.types._
- val schema = StructType(List(
- StructField("integer_column", IntegerType, nullable = false),
- StructField("string_column", StringType, nullable = true),
- StructField("date_column", DateType, nullable = true)
- ))
-
- val rdd = sc.parallelize(Seq(
- Row(1, "First Value", java.sql.Date.valueOf("2010-01-01")),
- Row(2, "Second Value", java.sql.Date.valueOf("2010-02-01"))
- ))
- val df = sqlContext.createDataFrame(rdd, schema)
使用parquet文件创建
val df = sqlContext.read.parquet("hdfs:/path/to/file")
使用json文件创建
- val df = spark.read.json("examples/src/main/resources/people.json")
-
- // Displays the content of the DataFrame to stdout
- df.show()
- // +----+-------+
- // | age| name|
- // +----+-------+
- // |null|Michael|
- // | 30| Andy|
- // | 19| Justin|
- // +----+-------+
使用csv文件,spark2.0+之后的版本可用
- //首先初始化一个SparkSession对象
- val spark = org.apache.spark.sql.SparkSession.builder
- .master("local")
- .appName("Spark CSV Reader")
- .getOrCreate;
-
- //然后使用SparkSessions对象加载CSV成为DataFrame
- val df = spark.read
- .format("com.databricks.spark.csv")
- .option("header", "true") //reading the headers
- .option("mode", "DROPMALFORMED")
- .load("csv/file/path"); //.csv("csv/file/path") //spark 2.0 api
-
- df.show()
补充:spark数据集的演变:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。