赞
踩
目录
anylabeling项目地址
我直接用的之前yolov5的conda虚拟环境
pip install anylabeling -i https://pypi.tuna.tsinghua.edu.cn/simple
或许可能直接安装好依赖,但是把该项目的requirenments.txt
- pip install -r requirements.txt -i https://pypi.douban.com/simple
-
以下代码启动运行:
anylabeling
可能会报错:
报错1
Warning: Ignoring XDG_SESSION_TYPE=wayland on Gnome. Use QT_QPA_PLATFORM=wayland to run on Wayland anyway.
你把 /etc/gdm/custom.conf中,#
WaylandEnable=false改为WaylandEnable=false,然后重启
报错2
Qt platform plugin “xcb“缺失
sudo apt-get install libxcb-xinerama0
然后再次执行
anylabeling
就会出现一个图形界面了
这里第二步选择的模型可以有Segment Anything和yolo系列的网络模型。
- cd segment-anything; pip install -e .
-
- pip install opencv-python pycocotools matplotlib onnxruntime onnx
下载以下几个预训练权重文件,文件从小到大依次排列,越大的模型分割效果越好,但是分割时间也越长,建议先使用最小的模型试试效果,目前实测最小的模型分割效果也很不错。
1,sam_vit_b_01ec64.pth
2,sam_vit_l_0b3195.pth
3,sam_vit_h_4b8939.pth
- wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth
- wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth
- wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
--checkpoint The path to the SAM model checkpoint 即SAM预训练权重
--output The filename to save the ONNX model to
--model-type In ['default', 'vit_h', 'vit_l', 'vit_b']. Which type of SAM model to export.
python scripts/export_onnx_model.py --checkpoint ./sam_vit_b_01ec64.pth --model-type vit_b --output sam_vit_b.onnx
这个软件加载模型必须要yaml文件:
Load Custom Model · Issue #39 · vietanhdev/anylabeling · GitHub
yaml文件如何编写:
Custom Models for Auto Labeling – AnyLabeling
yaml文件与onnx格式文件在同一目录下
运行软件会在家目录生成 anylabling文件夹
SegmentAnything:
- type: segment_anything
- name: segment_anything_vit_b_quant-r20230416
- display_name: Segment Anything (ViT-B Quant)
- decoder_model_path: segment_anything_vit_b_decoder_quant.onnx
- encoder_model_path: segment_anything_vit_b_encoder_quant.onnx
- input_size: 1024
- max_height: 682
- max_width: 1024
YOLOv5:
- type: yolov5
- name: yolov5l-r20230415
- display_name: YOLOv5l Ultralytics
- model_path: yolov5l.onnx
- confidence_threshold: 0.45
- input_height: 640
- input_width: 640
- nms_threshold: 0.45
- score_threshold: 0.5
- classes:
- - person
- - bicycle
- - car
- - motorcycle
- - airplane
- - bus
- - train
- - truck
- - boat
- - traffic light
- - fire hydrant
- - stop sign
- - parking meter
- - bench
- - bird
- - cat
- - dog
- - horse
- - sheep
- - cow
- - elephant
- - bear
- - zebra
- - giraffe
- - backpack
- - umbrella
- - handbag
- - tie
- - suitcase
- - frisbee
- - skis
- - snowboard
- - sports ball
- - kite
- - baseball bat
- - baseball glove
- - skateboard
- - surfboard
- - tennis racket
- - bottle
- - wine glass
- - cup
- - fork
- - knife
- - spoon
- - bowl
- - banana
- - apple
- - sandwich
- - orange
- - broccoli
- - carrot
- - hot dog
- - pizza
- - donut
- - cake
- - chair
- - couch
- - potted plant
- - bed
- - dining table
- - toilet
- - tv
- - laptop
- - mouse
- - remote
- - keyboard
- - cell phone
- - microwave
- - oven
- - toaster
- - sink
- - refrigerator
- - book
- - clock
- - vase
- - scissors
- - teddy bear
- - hair drier
- - toothbrush
YOLOv8:
- type: yolov8
- name: yolov8m-r20230415
- display_name: YOLOv8m Ultralytics
- model_path: yolov8m.onnx
- confidence_threshold: 0.45
- input_height: 640
- input_width: 640
- nms_threshold: 0.45
- score_threshold: 0.5
- classes:
- - person
- - bicycle
- - car
- - motorcycle
- - airplane
- - bus
- - train
- - truck
- - boat
- - traffic light
- - fire hydrant
- - stop sign
- - parking meter
- - bench
- - bird
- - cat
- - dog
- - horse
- - sheep
- - cow
- - elephant
- - bear
- - zebra
- - giraffe
- - backpack
- - umbrella
- - handbag
- - tie
- - suitcase
- - frisbee
- - skis
- - snowboard
- - sports ball
- - kite
- - baseball bat
- - baseball glove
- - skateboard
- - surfboard
- - tennis racket
- - bottle
- - wine glass
- - cup
- - fork
- - knife
- - spoon
- - bowl
- - banana
- - apple
- - sandwich
- - orange
- - broccoli
- - carrot
- - hot dog
- - pizza
- - donut
- - cake
- - chair
- - couch
- - potted plant
- - bed
- - dining table
- - toilet
- - tv
- - laptop
- - mouse
- - remote
- - keyboard
- - cell phone
- - microwave
- - oven
- - toaster
- - sink
- - refrigerator
- - book
- - clock
- - vase
- - scissors
- - teddy bear
- - hair drier
- - toothbrush
自动标注项目AnyLabeling上手体验和教程
yolo模型还是蛮好用
标注文件:
但是vit模型在window,onnxruntime获取内存报错。linux端即使最小的模型,也只能点一个点跑不起来,最好有GPU,然后在环境中安装onnx-runtime-gpu
SAM+LabelStudio实现自动标注试过了,点了猫图片半天没有反应。还接着尝试了好几个,如SAM-Tool项目,跑不起来。搞了我大半天时间,还是上面这个项目好用,stars走起
参考:
Qt运行出现 Ignoring XDG_SESSION_TYPE=wayland on Gnome. Use QT_QPA_PLATFORM=wayland to run....解决_楽 - 冰の菓的博客-CSDN博客
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。