赞
踩
我们看到的世界通常都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。
但如果用另一种方法来观察世界的话,你会发现世界是永恒不变的,这个静止的世界就叫做频域。
能够贯穿时域与频域的方法之一,就是傅里叶分析。傅里叶分析可以分为傅里叶级数(Fourier Serie)和傅里叶变换(Fourier Transformation)。傅里叶级数的本质是将一个周期的信号分解成无限多分开的(离散的)正弦波。傅里叶级数,在时域是一个周期且连续的函数,而在频域是一个非周期离散的函数。傅里叶变换,则是将一个时域非周期的连续信号,转换为一个在频域非周期的连续信号。
傅里叶告诉我们,任何周期函数都可以看作是不同振幅、不同相位正弦波的叠加。
傅里叶变换的作用——将时域转换成频域
滤波
OpenCV中涉及傅里叶变换的函数为cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32。
得到的结果中频率为0的部分会在左上角,通常需要转换到中心位置,可以通过shift变换来实现。
cv2.dft()返回的结果是双通道的(实部和虚部),通常还需要转换成图像格式才能展示([0, 255])。
低通滤波器实现图像模糊:
import cv2 import matplotlib.pyplot as plt import numpy as np # DFT img = cv2.imread(r'F:/aixin.jpg', 0) # img.dtype为uint8 img_float32 = np.float32(img) # 将uint8格式的图像转换成float32格式 dft = cv2.dft(img_float32, flags=cv2.DFT_COMPLEX_OUTPUT) # 傅里叶变换,得到频谱图,有两个通道,低频部分往往在频谱图的左上角 dft_shift = np.fft.fftshift(dft) # 将频谱图左上角低频部分转换到中心位置 height, width = img.shape centerh, centerw = int(height/2), int(width/2) # 获取图像中心位置 # 低通滤波器 mask = np.zeros((height, width, 2), np.uint8) mask[centerh-30:centerh+30, centerw-30:centerw+30] = 1 # IDFT fshift = dft_shift * mask # dft_shift只保留了中心部分的低频信息 f_ishift = np.fft.ifftshift(fshift) # 将中心位置的低频转回到左上角 img_back = cv2.idft(f_ishift) # 将频谱图还原成图像,此时的图像还无法展示,因为包含双通道(实部和虚部) img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1]) # 使得图像能够展示 plt.subplot(1, 2, 1) plt.title('source') plt.imshow(img, 'gray') plt.subplot(1, 2, 2) plt.title('low frequency') plt.imshow(img_back, 'gray') plt.show()
高通滤波器实现图像细节增强:
import cv2 import matplotlib.pyplot as plt import numpy as np # DFT img = cv2.imread(r'F:/aixin.jpg', 0) # img.dtype为uint8 img_float32 = np.float32(img) # 将uint8格式的图像转换成float32格式 dft = cv2.dft(img_float32, flags=cv2.DFT_COMPLEX_OUTPUT) # 傅里叶变换,得到频谱图,有两个通道,低频部分往往在频谱图的左上角 dft_shift = np.fft.fftshift(dft) # 将频谱图左上角低频部分转换到中心位置 height, width = img.shape centerh, centerw = int(height/2), int(width/2) # 获取图像中心位置 # 高通滤波器 mask = np.ones((height, width, 2), np.uint8) mask[centerh-30:centerh+30, centerw-30:centerw+30] = 0 # IDFT fshift = dft_shift * mask # dft_shift只保留了中心部分的低频信息 f_ishift = np.fft.ifftshift(fshift) # 将中心位置的低频转回到左上角 img_back = cv2.idft(f_ishift) # 将频谱图还原成图像,此时的图像还无法展示,因为包含双通道(实部和虚部) img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1]) # 使得图像能够展示 plt.subplot(1, 2, 1) plt.title('source') plt.imshow(img, 'gray') plt.subplot(1, 2, 2) plt.title('high frequency') plt.imshow(img_back, 'gray') plt.show()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。