赞
踩
Table of Contents
Eigen 是一个基于C++模板的线性代数库,直接将库下载后放在项目目录下,然后包含头文件就能使用,非常方便。此外,Eigen的接口清晰,稳定高效。
#include <Eigen/Dense> Matrix<double, 3, 3> A; // Fixed rows and cols. Same as Matrix3d. Matrix<double, 3, Dynamic> B; // Fixed rows, dynamic cols. Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd. Matrix<double, 3, 3, RowMajor> E; // Row major; default is column-major. Matrix3f P, Q, R; // 3x3 float matrix. Vector3f x, y, z; // 3x1 float matrix. RowVector3f a, b, c; // 1x3 float matrix. VectorXd v; // Dynamic column vector of doubles // Eigen // Matlab // comments x.size() // length(x) // vector size C.rows() // size(C,1) // number of rows C.cols() // size(C,2) // number of columns x(i) // x(i+1) // Matlab is 1-based C(i,j) // C(i+1,j+1) //
// Basic usage // Eigen // Matlab // comments x.size() // length(x) // vector size C.rows() // size(C,1) // number of rows C.cols() // size(C,2) // number of columns x(i) // x(i+1) // Matlab is 1-based C(i, j) // C(i+1,j+1) // A.resize(4, 4); // Runtime error if assertions are on. B.resize(4, 9); // Runtime error if assertions are on. A.resize(3, 3); // Ok; size didn't change. B.resize(3, 9); // Ok; only dynamic cols changed. A << 1, 2, 3, // Initialize A. The elements can also be 4, 5, 6, // matrices, which are stacked along cols 7, 8, 9; // and then the rows are stacked. B << A, A, A; // B is three horizontally stacked A's. A.fill(10); // Fill A with all 10's.
- // Eigen // Matlab
- MatrixXd::Identity(rows,cols) // eye(rows,cols)
- C.setIdentity(rows,cols) // C = eye(rows,cols)
- MatrixXd::Zero(rows,cols) // zeros(rows,cols)
- C.setZero(rows,cols) // C = ones(rows,cols)
- MatrixXd::Ones(rows,cols) // ones(rows,cols)
- C.setOnes(rows,cols) // C = ones(rows,cols)
- MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1).
- C.setRandom(rows,cols) // C = rand(rows,cols)*2-1
- VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)'
- v.setLinSpaced(size,low,high) // v = linspace(low,high,size)'
- // Matrix slicing and blocks. All expressions listed here are read/write.
- // Templated size versions are faster. Note that Matlab is 1-based (a size N
- // vector is x(1)...x(N)).
- // Eigen // Matlab
- x.head(n) // x(1:n)
- x.head<n>() // x(1:n)
- x.tail(n) // x(end - n + 1: end)
- x.tail<n>() // x(end - n + 1: end)
- x.segment(i, n) // x(i+1 : i+n)
- x.segment<n>(i) // x(i+1 : i+n)
- P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols)
- P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols)
- P.row(i) // P(i+1, :)
- P.col(j) // P(:, j+1)
- P.leftCols<cols>() // P(:, 1:cols)
- P.leftCols(cols) // P(:, 1:cols)
- P.middleCols<cols>(j) // P(:, j+1:j+cols)
- P.middleCols(j, cols) // P(:, j+1:j+cols)
- P.rightCols<cols>() // P(:, end-cols+1:end)
- P.rightCols(cols) // P(:, end-cols+1:end)
- P.topRows<rows>() // P(1:rows, :)
- P.topRows(rows) // P(1:rows, :)
- P.middleRows<rows>(i) // P(i+1:i+rows, :)
- P.middleRows(i, rows) // P(i+1:i+rows, :)
- P.bottomRows<rows>() // P(end-rows+1:end, :)
- P.bottomRows(rows) // P(end-rows+1:end, :)
- P.topLeftCorner(rows, cols) // P(1:rows, 1:cols)
- P.topRightCorner(rows, cols) // P(1:rows, end-cols+1:end)
- P.bottomLeftCorner(rows, cols) // P(end-rows+1:end, 1:cols)
- P.bottomRightCorner(rows, cols) // P(end-rows+1:end, end-cols+1:end)
- P.topLeftCorner<rows,cols>() // P(1:rows, 1:cols)
- P.topRightCorner<rows,cols>() // P(1:rows, end-cols+1:end)
- P.bottomLeftCorner<rows,cols>() // P(end-rows+1:end, 1:cols)
- P.bottomRightCorner<rows,cols>() // P(end-rows+1:end, end-cols+1:end)
- // Of particular note is Eigen's swap function which is highly optimized.
- // Eigen // Matlab
- R.row(i) = P.col(j); // R(i, :) = P(:, i)
- R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1])
- // Views, transpose, etc; all read-write except for .adjoint().
- // Eigen // Matlab
- R.adjoint() // R'
- R.transpose() // R.' or conj(R')
- R.diagonal() // diag(R)
- x.asDiagonal() // diag(x)
- R.transpose().colwise().reverse(); // rot90(R)
- R.conjugate() // conj(R)
- // All the same as Matlab, but matlab doesn't have *= style operators.
- // Matrix-vector. Matrix-matrix. Matrix-scalar.
- y = M*x; R = P*Q; R = P*s;
- a = b*M; R = P - Q; R = s*P;
- a *= M; R = P + Q; R = P/s;
- R *= Q; R = s*P;
- R += Q; R *= s;
- R -= Q; R /= s;
// Vectorized operations on each element independently // Eigen // Matlab R = P.cwiseProduct(Q); // R = P .* Q R = P.array() * s.array();// R = P .* s R = P.cwiseQuotient(Q); // R = P ./ Q R = P.array() / Q.array();// R = P ./ Q R = P.array() + s.array();// R = P + s R = P.array() - s.array();// R = P - s R.array() += s; // R = R + s R.array() -= s; // R = R - s R.array() < Q.array(); // R < Q R.array() <= Q.array(); // R <= Q R.cwiseInverse(); // 1 ./ P R.array().inverse(); // 1 ./ P R.array().sin() // sin(P) R.array().cos() // cos(P) R.array().pow(s) // P .^ s R.array().square() // P .^ 2 R.array().cube() // P .^ 3 R.cwiseSqrt() // sqrt(P) R.array().sqrt() // sqrt(P) R.array().exp() // exp(P) R.array().log() // log(P) R.cwiseMax(P) // max(R, P) R.array().max(P.array()) // max(R, P) R.cwiseMin(P) // min(R, P) R.array().min(P.array()) // min(R, P) R.cwiseAbs() // abs(P) R.array().abs() // abs(P) R.cwiseAbs2() // abs(P.^2) R.array().abs2() // abs(P.^2) (R.array() < s).select(P,Q); // (R < s ? P : Q)
// Reductions. int r, c; // Eigen // Matlab R.minCoeff() // min(R(:)) R.maxCoeff() // max(R(:)) s = R.minCoeff(&r, &c) // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i); s = R.maxCoeff(&r, &c) // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i); R.sum() // sum(R(:)) R.colwise().sum() // sum(R) R.rowwise().sum() // sum(R, 2) or sum(R')' R.prod() // prod(R(:)) R.colwise().prod() // prod(R) R.rowwise().prod() // prod(R, 2) or prod(R')' R.trace() // trace(R) R.all() // all(R(:)) R.colwise().all() // all(R) R.rowwise().all() // all(R, 2) R.any() // any(R(:)) R.colwise().any() // any(R) R.rowwise().any() // any(R, 2)
- // Dot products, norms, etc.
- // Eigen // Matlab
- x.norm() // norm(x). Note that norm(R) doesn't work in Eigen.
- x.squaredNorm() // dot(x, x) Note the equivalence is not true for complex
- x.dot(y) // dot(x, y)
- x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry>
- Type conversion
- // Eigen // Matlab
- A.cast<double>(); // double(A)
- A.cast<float>(); // single(A)
- A.cast<int>(); // int32(A)
- A.real(); // real(A)
- A.imag(); // imag(A)
- // if the original type equals destination type, no work is done
- // Solve Ax = b. Result stored in x. Matlab: x = A \ b.
- x = A.ldlt().solve(b)); // A sym. p.s.d. #include <Eigen/Cholesky>
- x = A.llt() .solve(b)); // A sym. p.d. #include <Eigen/Cholesky>
- x = A.lu() .solve(b)); // Stable and fast. #include <Eigen/LU>
- x = A.qr() .solve(b)); // No pivoting. #include <Eigen/QR>
- x = A.svd() .solve(b)); // Stable, slowest. #include <Eigen/SVD>
- // .ldlt() -> .matrixL() and .matrixD()
- // .llt() -> .matrixL()
- // .lu() -> .matrixL() and .matrixU()
- // .qr() -> .matrixQ() and .matrixR()
- // .svd() -> .matrixU(), .singularValues(), and .matrixV()
- // Eigenvalue problems
- // Eigen // Matlab
- A.eigenvalues(); // eig(A);
- EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
- eig.eigenvalues(); // diag(val)
- eig.eigenvectors(); // vec
- // For self-adjoint matrices use SelfAdjointEigenSolver<>
- #include <iostream>
- #include "Eigen/Dense"
- using namespace Eigen;
- int main()
- {
- MatrixXf m1(3,4); //动态矩阵,建立3行4列。
- MatrixXf m2(4,3); //4行3列,依此类推。
- MatrixXf m3(3,3);
-
- Vector3f v1; //若是静态数组,则不用指定行或者列
- /* 初始化 */
- Matrix3d m = Matrix3d::Random();
- m1 = MatrixXf::Zero(3,4); //用0矩阵初始化,要指定行列数
- m2 = MatrixXf::Zero(4,3);
- m3 = MatrixXf::Identity(3,3); //用单位矩阵初始化
- v1 = Vector3f::Zero(); //同理,若是静态的,不用指定行列数
-
- m1 << 1,0,0,1, //也可以以这种方式初始化
- 1,5,0,1,
- 0,0,9,1;
- m2 << 1,0,0,
- 0,4,0,
- 0,0,7,
- 1,1,1;
- //向量初始化,与矩阵类似
- Vector3d v3(1,2,3);
- VectorXf vx(30);
- }
使用Map函数,可以实现Eigen的矩阵和c++中的数组直接转换,语法如下:
- //@param MatrixType 矩阵类型
- //@param MapOptions 可选参数,指的是指针是否对齐,Aligned, or Unaligned. The default is Unaligned.
- //@param StrideType 可选参数,步长
- /*
- Map<typename MatrixType,
- int MapOptions,
- typename StrideType>
- */
- int i;
- //数组转矩阵
- double *aMat = new double[20];
- for(i =0;i<20;i++)
- {
- aMat[i] = rand()%11;
- }
- //静态矩阵,编译时确定维数 Matrix<double,4,5>
- Eigen:Map<Matrix<double,4,5> > staMat(aMat);
-
-
- //输出
- for (int i = 0; i < staMat.size(); i++)
- std::cout << *(staMat.data() + i) << " ";
- std::cout << std::endl << std::endl;
-
-
- //动态矩阵,运行时确定 MatrixXd
- Map<MatrixXd> dymMat(aMat,4,5);
-
-
- //输出,应该和上面一致
- for (int i = 0; i < dymMat.size(); i++)
- std::cout << *(dymMat.data() + i) << " ";
- std::cout << std::endl << std::endl;
-
- //Matrix中的数据存在一维数组中,默认是行优先的格式,即一行行的存
- //data()返回Matrix中的指针
- dymMat.data();
eigen重载了基础的+ - * / += -= = /= 可以表示标量和矩阵或者矩阵和矩阵
- #include <iostream>
- #include <Eigen/Dense>
- using namespace Eigen;
- int main()
- {
- //单个取值,单个赋值
- double value00 = staMat(0,0);
- double value10 = staMat(1,0);
- staMat(0,0) = 100;
- std::cout << value00 <<value10<<std::endl;
- std::cout <<staMat<<std::endl<<std::endl;
- //加减乘除示例 Matrix2d 等同于 Matrix<double,2,2>
- Matrix2d a;
- a << 1, 2,
- 3, 4;
- MatrixXd b(2,2);
- b << 2, 3,
- 1, 4;
-
- Matrix2d c = a + b;
- std::cout<< c<<std::endl<<std::endl;
-
- c = a - b;
- std::cout<<c<<std::endl<<std::endl;
-
- c = a * 2;
- std::cout<<c<<std::endl<<std::endl;
-
- c = 2.5 * a;
- std::cout<<c<<std::endl<<std::endl;
-
- c = a / 2;
- std::cout<<c<<std::endl<<std::endl;
-
- c = a * b;
- std::cout<<c<<std::endl<<std::endl;
- #include <iostream>
- #include <Eigen/Dense>
- using namespace Eigen;
- using namespace std;
- int main()
- {
- //点积、叉积(针对向量的)
- Vector3d v(1,2,3);
- Vector3d w(0,1,2);
- std::cout<<v.dot(w)<<std::endl<<std::endl;
- std::cout<<w.cross(v)<<std::endl<<std::endl;
- }
小矩阵(4 * 4及以下)eigen会自动优化,默认采用LU分解,效率不高
- #include <iostream>
- #include <Eigen/Dense>
- using namespace std;
- using namespace Eigen;
- int main()
- {
- Matrix2d c;
- c << 1, 2,
- 3, 4;
- //转置、伴随
- std::cout<<c<<std::endl<<std::endl;
- std::cout<<"转置\n"<<c.transpose()<<std::endl<<std::endl;
- std::cout<<"伴随\n"<<c.adjoint()<<std::endl<<std::endl;
- //逆矩阵、行列式
- std::cout << "行列式: " << c.determinant() << std::endl;
- std::cout << "逆矩阵\n" << c.inverse() << std::endl;
- }
- #include <iostream>
- #include <Eigen/Dense>
- using namespace std;
- using namespace Eigen;
- int main()
- {
- //特征向量、特征值
- std::cout << "Here is the matrix A:\n" << a << std::endl;
- SelfAdjointEigenSolver<Matrix2d> eigensolver(a);
- if (eigensolver.info() != Success) abort();
- std::cout << "特征值:\n" << eigensolver.eigenvalues() << std::endl;
- std::cout << "Here's a matrix whose columns are eigenvectors of A \n"
- << "corresponding to these eigenvalues:\n"
- << eigensolver.eigenvectors() << std::endl;
- }
- #include <iostream>
- #include <Eigen/Dense>
- using namespace std;
- using namespace Eigen;
- int main()
- {
- //线性方程求解 Ax =B;
- Matrix4d A;
- A << 2,-1,-1,1,
- 1,1,-2,1,
- 4,-6,2,-2,
- 3,6,-9,7;
-
- Vector4d B(2,4,4,9);
-
- Vector4d x = A.colPivHouseholderQr().solve(B);
- Vector4d x2 = A.llt().solve(B);
- Vector4d x3 = A.ldlt().solve(B);
-
-
- std::cout << "The solution is:\n" << x <<"\n\n"<<x2<<"\n\n"<<x3 <<std::endl;
- }
除了colPivHouseholderQr、LLT、LDLT,还有以下的函数可以求解线性方程组,请注意精度和速度: 解小矩阵(4*4)基本没有速度差别
最小二乘求解
最小二乘求解有两种方式,jacobiSvd或者colPivHouseholderQr,4*4以下的小矩阵速度没有区别,jacobiSvd可能更快,大矩阵最好用colPivHouseholderQr
- #include <iostream>
- #include <Eigen/Dense>
- using namespace std;
- using namespace Eigen;
- int main()
- {
- MatrixXf A1 = MatrixXf::Random(3, 2);
- std::cout << "Here is the matrix A:\n" << A1 << std::endl;
- VectorXf b1 = VectorXf::Random(3);
- std::cout << "Here is the right hand side b:\n" << b1 << std::endl;
- //jacobiSvd 方式:Slow (but fast for small matrices)
- std::cout << "The least-squares solution is:\n"
- << A1.jacobiSvd(ComputeThinU | ComputeThinV).solve(b1) << std::endl;
- //colPivHouseholderQr方法:fast
- std::cout << "The least-squares solution is:\n"
- << A1.colPivHouseholderQr().solve(b1) << std::endl;
- }
稀疏矩阵的头文件包括:
- #include
-
- typedef Eigen::Triplet<double> T;
- std::vector<T> tripletList;
- triplets.reserve(estimation_of_entries); //estimation_of_entries是预估的条目
- for(...)
- {
- tripletList.push_back(T(i,j,v_ij));//第 i,j个有值的位置的值
- }
- SparseMatrixType mat(rows,cols);
- mat.setFromTriplets(tripletList.begin(), tripletList.end());
- // mat is ready to go!
2.直接将已知的非0值插入
- SparseMatrix<double> mat(rows,cols);
- mat.reserve(VectorXi::Constant(cols,6));
- for(...)
- {
- // i,j 个非零值 v_ij != 0
- mat.insert(i,j) = v_ij;
- }
- mat.makeCompressed(); // optional
稀疏矩阵支持大部分一元和二元运算:
sm1.real() sm1.imag() -sm1 0.5*sm1
sm1+sm2 sm1-sm2 sm1.cwiseProduct(sm2)
二元运算中,稀疏矩阵和普通矩阵可以混合使用
//dm表示普通矩阵
dm2 = sm1 + dm1;
也支持计算转置矩阵和伴随矩阵
Eigen库是一个开源的C++线性代数库,它提供了快速的有关矩阵的线性代数运算,还包括解方程等功能。Eigen是一个用纯头文件搭建起来的库,这意味这你只要能找到它的头文件,就能使用它。Eigen头文件的默认位置是“/usr/include/eigen3”.
由于Eigen库相较于OpenCV中的Mat等库而言更加高效,许多上层的软件库也使用Eigen进行矩阵运算,比如SLAM中常用的g2o,Sophus等。此外Eigen库还被被用于Caffe,Tensorflow等许多深度学习相关的框架中。
Eigen库中各种形式的表示如下:
- 旋转矩阵(3X3):Eigen::Matrix3d
- 旋转向量(3X1):Eigen::AngleAxisd
- 四元数(4X1):Eigen::Quaterniond
- 平移向量(3X1):Eigen::Vector3d
- 变换矩阵(4X4):Eigen::Isometry3d
以下是具体的实现代码eigen_geometry.cpp:
- #include <iostream>
- #include <Eigen/Dense>
-
-
- using namespace std;
- using namespace Eigen;
-
- int main(int argc, char **argv) {
-
-
-
- //下面三个变量作为下面演示的中间变量
-
- AngleAxisd t_V(M_PI / 4, Vector3d(0, 0, 1));
- Matrix3d t_R = t_V.matrix();
- Quaterniond t_Q(t_V);
-
-
- //对旋转向量(轴角)赋值的三大种方法
-
- //1.使用旋转的角度和旋转轴向量(此向量为单位向量)来初始化角轴
- AngleAxisd V1(M_PI / 4, Vector3d(0, 0, 1));//以(0,0,1)为旋转轴,旋转45度
- cout << "Rotation_vector1" << endl << V1.matrix() << endl;
-
- //2.使用旋转矩阵转旋转向量的方式
-
- //2.1 使用旋转向量的fromRotationMatrix()函数来对旋转向量赋值(注意此方法为旋转向量独有,四元数没有)
- AngleAxisd V2;
- V2.fromRotationMatrix(t_R);
- cout << "Rotation_vector2" << endl << V2.matrix() << endl;
-
- //2.2 直接使用旋转矩阵来对旋转向量赋值
- AngleAxisd V3;
- V3 = t_R;
- cout << "Rotation_vector3" << endl << V3.matrix() << endl;
-
- //2.3 使用旋转矩阵来对旋转向量进行初始化
- AngleAxisd V4(t_R);
- cout << "Rotation_vector4" << endl << V4.matrix() << endl;
-
- //3. 使用四元数来对旋转向量进行赋值
-
- //3.1 直接使用四元数来对旋转向量赋值
- AngleAxisd V5;
- V5 = t_Q;
- cout << "Rotation_vector5" << endl << V5.matrix() << endl;
-
- //3.2 使用四元数来对旋转向量进行初始化
- AngleAxisd V6(t_Q);
- cout << "Rotation_vector6" << endl << V6.matrix() << endl;
-
-
- //------------------------------------------------------
-
- //对四元数赋值的三大种方法(注意Eigen库中的四元数前三维是虚部,最后一维是实部)
-
- //1.使用旋转的角度和旋转轴向量(此向量为单位向量)来初始化四元数,即使用q=[cos(A/2),n_x*sin(A/2),n_y*sin(A/2),n_z*sin(A/2)]
- Quaterniond Q1(cos((M_PI / 4) / 2), 0 * sin((M_PI / 4) / 2), 0 * sin((M_PI / 4) / 2), 1 * sin((M_PI / 4) / 2));//以(0,0,1)为旋转轴,旋转45度
- //第一种输出四元数的方式
- cout << "Quaternion1" << endl << Q1.coeffs() << endl;
-
- //第二种输出四元数的方式
- cout << Q1.x() << endl << endl;
- cout << Q1.y() << endl << endl;
- cout << Q1.z() << endl << endl;
- cout << Q1.w() << endl << endl;
-
- //2. 使用旋转矩阵转四元數的方式
-
- //2.1 直接使用旋转矩阵来对旋转向量赋值
- Quaterniond Q2;
- Q2 = t_R;
- cout << "Quaternion2" << endl << Q2.coeffs() << endl;
-
-
- //2.2 使用旋转矩阵来对四元數进行初始化
- Quaterniond Q3(t_R);
- cout << "Quaternion3" << endl << Q3.coeffs() << endl;
-
- //3. 使用旋转向量对四元数来进行赋值
-
- //3.1 直接使用旋转向量对四元数来赋值
- Quaterniond Q4;
- Q4 = t_V;
- cout << "Quaternion4" << endl << Q4.coeffs() << endl;
-
- //3.2 使用旋转向量来对四元数进行初始化
- Quaterniond Q5(t_V);
- cout << "Quaternion5" << endl << Q5.coeffs() << endl;
-
-
-
- //----------------------------------------------------
-
- //对旋转矩阵赋值的三大种方法
-
- //1.使用旋转矩阵的函数来初始化旋转矩阵
- Matrix3d R1=Matrix3d::Identity();
- cout << "Rotation_matrix1" << endl << R1 << endl;
-
- //2. 使用旋转向量转旋转矩阵来对旋转矩阵赋值
-
- //2.1 使用旋转向量的成员函数matrix()来对旋转矩阵赋值
- Matrix3d R2;
- R2 = t_V.matrix();
- cout << "Rotation_matrix2" << endl << R2 << endl;
-
- //2.2 使用旋转向量的成员函数toRotationMatrix()来对旋转矩阵赋值
- Matrix3d R3;
- R3 = t_V.toRotationMatrix();
- cout << "Rotation_matrix3" << endl << R3 << endl;
-
- //3. 使用四元数转旋转矩阵来对旋转矩阵赋值
-
- //3.1 使用四元数的成员函数matrix()来对旋转矩阵赋值
- Matrix3d R4;
- R4 = t_Q.matrix();
- cout << "Rotation_matrix4" << endl << R4 << endl;
-
- //3.2 使用四元数的成员函数toRotationMatrix()来对旋转矩阵赋值
- Matrix3d R5;
- R5 = t_Q.toRotationMatrix();
- cout << "Rotation_matrix5" << endl << R5 << endl;
-
- return 0;
-
-
- }
上述代码对应的CMakeLists.txt为:
- CMAKE_MINIMUM_REQUIRED(VERSION 2.8)
- project(useGeometry)
- include_directories("/usr/include/eigen3")
- add_executable(eigen_geometry eigen_geometry.cpp)
旋转矩阵(R),旋转向量(V)和四元数(Q)分别通过自身初始化自己的方式,也就是第一分部分代码对旋转矩阵(R),旋转向量(V)和四元数(Q)赋值的第一种方式。
- //1.使用旋转矩阵的函数来初始化旋转矩阵
- Matrix3d R1=Matrix3d::Identity();
- cout << "Rotation_matrix1" << endl << R1 << endl;
- //1.使用旋转的角度和旋转轴向量(此向量为单位向量)来初始化角轴
- AngleAxisd V1(M_PI / 4, Vector3d(0, 0, 1));//以(0,0,1)为旋转轴,旋转45度
-
- cout << "Rotation_vector1" << endl << V1.matrix() << endl;
- //1.使用旋转的角度和旋转轴向量(此向量为单位向量)来初始化四元数,即使用q=[cos(A/2),n_x*sin(A/2),n_y*sin(A/2),n_z*sin(A/2)]
-
- Quaterniond Q1(cos((M_PI / 4) / 2), 0 * sin((M_PI / 4) / 2), 0 * sin((M_PI / 4) / 2), 1 * sin((M_PI / 4) / 2));//以(0,0,1)为旋转轴,旋转45度
-
- cout << "Quaternion1" << endl << Q1.coeffs() << endl;
http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt
http://blog.csdn.net/augusdi/article/details/12907341
http://www.cnblogs.com/python27/p/EigenQuickRef.html
https://blog.csdn.net/r1254/article/details/47418871
https://blog.csdn.net/u011092188/article/details/77430988
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。