当前位置:   article > 正文

OpenCV图像处理-图片拼接(Python)_python opencv 图像拼接

python opencv 图像拼接

1. 图片拼接原理

对于图像拼接主要分为两部分:1.特征点匹配,确定两幅图之间的位置关系;2.把所有图像投影变换到同一坐标系,并完成对接与融合。

2.特征点匹配

首先创建特征转换对象,然后分别计算两幅图像的特征点与描述子,接着创建特征匹配器,根据描述子找到两幅图像的匹配子,然后过滤掉一些无效的匹配子,最后根据两幅图的坐标,计算出单应性矩阵,得到两幅图的位置关系。

def get_homo(img1, img2):

    #1. 创建特征转换对象
    #2. 通过特征转换对象获得特征点和描述子
    #3. 创建特征匹配器
    #4. 进行特征匹配
    #5. 过滤特征,找出有效的特征匹配点

    sift = cv2.xfeatures2d.SIFT_create()

    k1, d1 = sift.detectAndCompute(img1, None)
    k2, d2 = sift.detectAndCompute(img2, None)

    #创建特征匹配器
    bf = cv2.BFMatcher()
    matches = bf.knnMatch(d1, d2, k=2)

    #过滤特征,找出有效的特征匹配点
    verify_ratio = 0.8
    verify_matches = []
    for m1, m2 in matches:
        if m1.distance < 0.8 * m2.distance:
            verify_matches.append(m1)
    
	# 符合一定数量的特征点才进行求单应性矩阵的工作
    min_matches = 8
    if len(verify_matches) > min_matches:

        img1_pts = []
        img2_pts = []

        for m in verify_matches:
        	# 记录每个描述子的坐标
            img1_pts.append(k1[m.queryIdx].pt)
            img2_pts.append(k2[m.trainIdx].pt)
        #[(x1, y1), (x2, y2), ...]
        #[[x1, y1], [x2, y2], ...]

        img1_pts = np.float32(img1_pts).reshape(-1, 1, 2)
        img2_pts = np.float32(img2_pts).reshape(-1, 1, 2)
        H, mask = cv2.findHomography(img1_pts, img2_pts, cv2.RANSAC, 5.0)
        return H
    
    else:
        print('err: Not enough matches!')
        exit()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47

3. 图像对接

图像对接的本质就是把一幅图像投影到另一幅图像的坐标系之中,然后通过平移找到合适的位置,最后将另一张图片贴上即可。

def stitch_image(img1, img2, H):
    # 1. 获得每张图片的四个角点
    # 2. 对图片进行变换(单应性矩阵使图进行旋转,平移)
    # 3. 创建一张大图,将两张图拼接到一起
    # 4. 将结果输出

    #获得原始图的高/宽
    h1, w1 = img1.shape[:2]
    h2, w2 = img2.shape[:2]
	
	# 获取图片的四个角点
    img1_dims = np.float32([[0, 0], [0, h1], [w1, h1], [w1, 0]]).reshape(-1, 1, 2)
    img2_dims = np.float32([[0, 0], [0, h2], [w2, h2], [w2, 0]]).reshape(-1, 1, 2)

	# 将图1的原始四个点,根据单应性矩阵,获得投影坐标
    img1_transform = cv2.perspectiveTransform(img1_dims, H)

    # print(img1_dims)
    # print(img2_dims)
    # print(img1_transform)
	
	# 将两个图像的角点拼接起来。
    result_dims = np.concatenate((img2_dims, img1_transform), axis=0)
    #print(result_dims)
	
	# 获取图像中的最小点,最大点,防止有些信息显示不到
    [x_min, y_min] = np.int32(result_dims.min(axis=0).ravel()-0.5)
    [x_max, y_max ] = np.int32(result_dims.max(axis=0).ravel()+0.5)

    #平移的距离(左加右减,上加下减)
    transform_dist = [-x_min, -y_min]

    #[1, 0, dx]
    #[0, 1, dy]         
    #[0, 0, 1 ]
    # 创建好平移矩阵
    transform_array = np.array([[1, 0, transform_dist[0]],
                                [0, 1, transform_dist[1]],
                                [0, 0, 1]])
	# 透视变换,得到结果矩阵(只是img1来进行变换),但是图片是img1+img2的大小
    result_img = cv2.warpPerspective(img1, transform_array.dot(H), (x_max-x_min, y_max-y_min))


# 将img2贴到结果贴到原图中
    result_img[transform_dist[1]:transform_dist[1]+h2, 
                transform_dist[0]:transform_dist[0]+w2] = img2

    return result_img
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48

4. 完整代码

import cv2
import numpy  as np

def stitch_image(img1, img2, H):
    # 1. 获得每张图片的四个角点
    # 2. 对图片进行变换(单应性矩阵使图进行旋转,平移)
    # 3. 创建一张大图,将两张图拼接到一起
    # 4. 将结果输出

    #获得原始图的高/宽
    h1, w1 = img1.shape[:2]
    h2, w2 = img2.shape[:2]

    img1_dims = np.float32([[0, 0], [0, h1], [w1, h1], [w1, 0]]).reshape(-1, 1, 2)
    img2_dims = np.float32([[0, 0], [0, h2], [w2, h2], [w2, 0]]).reshape(-1, 1, 2)


    img1_transform = cv2.perspectiveTransform(img1_dims, H)

    # print(img1_dims)
    # print(img2_dims)
    # print(img1_transform)

    result_dims = np.concatenate((img2_dims, img1_transform), axis=0)
    #print(result_dims)

    [x_min, y_min] = np.int32(result_dims.min(axis=0).ravel()-0.5)
    [x_max, y_max ] = np.int32(result_dims.max(axis=0).ravel()+0.5)

    #平移的距离
    transform_dist = [-x_min, -y_min]

    #[1, 0, dx]
    #[0, 1, dy]         
    #[0, 0, 1 ]
    transform_array = np.array([[1, 0, transform_dist[0]],
                                [0, 1, transform_dist[1]],
                                [0, 0, 1]])

    result_img = cv2.warpPerspective(img1, transform_array.dot(H), (x_max-x_min, y_max-y_min))

    # result_img[transform_dist[1]:transform_dist[1]+h2,
    #             transform_dist[0]:transform_dist[0]+w2] = img2

    return result_img


  
def get_homo(img1, img2):

    #1. 创建特征转换对象
    #2. 通过特征转换对象获得特征点和描述子
    #3. 创建特征匹配器
    #4. 进行特征匹配
    #5. 过滤特征,找出有效的特征匹配点

    sift = cv2.xfeatures2d.SIFT_create()

    k1, d1 = sift.detectAndCompute(img1, None)
    k2, d2 = sift.detectAndCompute(img2, None)

    #创建特征匹配器
    bf = cv2.BFMatcher()
    matches = bf.knnMatch(d1, d2, k=2)

    #过滤特征,找出有效的特征匹配点
    verify_ratio = 0.8
    verify_matches = []
    for m1, m2 in matches:
        if m1.distance < 0.8 * m2.distance:
            verify_matches.append(m1)
    
    min_matches = 8
    if len(verify_matches) > min_matches:

        img1_pts = []
        img2_pts = []

        for m in verify_matches:
            img1_pts.append(k1[m.queryIdx].pt)
            img2_pts.append(k2[m.trainIdx].pt)
        #[(x1, y1), (x2, y2), ...]
        #[[x1, y1], [x2, y2], ...]

        img1_pts = np.float32(img1_pts).reshape(-1, 1, 2)
        img2_pts = np.float32(img2_pts).reshape(-1, 1, 2)
        H, mask = cv2.findHomography(img1_pts, img2_pts, cv2.RANSAC, 5.0)
        return H
    
    else:
        print('err: Not enough matches!')
        exit()


#第一步,读取文件,将图片设置成一样大小640x480
#第二步,找特征点,描述子,计算单应性矩阵
#第三步,根据单应性矩阵对图像进行变换,然后平移
#第四步,拼接并输出最终结果

# 读取两张图片
img1 = cv2.imread('map1.png')
img2 = cv2.imread('map2.png')

# 将两张图片设置成同样大小
img1 = cv2.resize(img1, (640, 480))
img2 = cv2.resize(img2, (640, 480))

inputs = np.hstack((img1, img2))

# 获得单应性矩阵
H = get_homo(img1, img2)

# 进行图像拼接
result_image = stitch_image(img1, img2, H)



cv2.imshow('input img', result_image)
cv2.waitKey()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120

代码使用的图片链接
以上代码仅供学习使用,仅作参考。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/81269
推荐阅读
相关标签
  

闽ICP备14008679号