赞
踩
以下原图中,物体连靠在一起,目的是将其分割开,再提取轮廓和定位
原图:
最终效果:
麻烦的地方是,分割开右下角部分,两个连在一起的目标物体,下图所示:
基本方法:BoxFilter滤波、二值化、轮廓提取,凸包检测,图像的矩
代码如下:
- /// <summary>
- /// 获取分割点
- /// </summary>
- /// <param name="contours"></param>
- /// <param name="contourCount"></param>
- /// <param name="arcLength"></param>
- /// <param name="farDistance"></param>
- /// <returns></returns>
- public List<Point> GetSplitPoints(Point[][] contours, List<int> contourCount, int arcLength, int farDistance)
- {
- #region 凸包检测
- List<double> lArc = new List<double>();
- //Mat src = srcImage.Clone();
- List<Point[]> lpContours = new List<Point[]>();
- List<int> hulls = new List<int>();
- Point lastP = new Point();
- Point firstP = new Point();
- Point farLastP = new Point();
- List<Point> lps = new List<Point>();
- int dot = 1;
- List<int> depth = new List<int>();
- for (int i = 0; i < contourCount.Count; i++)
- {
- InputArray inputArray = InputArray.Create<Point>(contours[contourCount[i]]);
- OutputArray outputArray = OutputArray.Create(hulls);
- Cv2.ConvexHull(inputArray, outputArray, false, false);
- if (Cv2.ArcLength(inputArray, true) < arcLength)
- {
- //lArc.Add(Cv2.ArcLength(inputArray, true));
- continue;
- }
- //前三个值得含义分别为:凸缺陷的起始点,凸缺陷的终点,凸缺陷的最深点(即边缘点到凸包距离最大点)。
- var defects = Cv2.ConvexityDefects(contours[contourCount[i]], hulls);
- for (int j = 0; j < defects.Length; j++)
- {
- OpenCvSharp.Point start = contours[contourCount[i]][defects[j].Item0];
- OpenCvSharp.Point end = contours[contourCount[i]][defects[j].Item1];
- OpenCvSharp.Point far = contours[contourCount[i]][defects[j].Item2];
- //OpenCvSharp.Point fart = contours[contourCount[i]][defects[j].Item3];
- if (defects[j].Item3 > farDistance) //(4500 < defects[j].Item3 && defects[j].Item3 < 300000)
- {
- lps.Add(contours[contourCount[i]][defects[j].Item2]);
- depth.Add(defects[j].Item3);
- }
- }
- }
- #endregion
- return lps;
- }
-
- /// <summary>
- /// 获取最小内接矩形
- /// </summary>
- /// <param name="contours"></param>
- /// <param name="contourCount"></param>
- /// <returns></returns>
- public List<RotatedRect> GetMinRects(Point[][] contours, List<int> contourCount)
- {
- //Cv2.ImShow(",mmmm", morphImage);
-
- //double rotateAngel = 0;
- Point2f[] vertices = new Point2f[4];
- //Point2f minRectcenterPoint = new Point2f();
- List<RotatedRect> minRects = new List<RotatedRect>();
- for (int i = 0; i < contourCount.Count; i++)
- {
- //获取轮廓点的矩形区域
- //绘制Rio区域最小矩形
- #region 绘制Rio区域最小矩形
- RotatedRect minRect = Cv2.MinAreaRect(contours[contourCount[i]]);
- minRects.Add(minRect);
- #endregion
- }
- return minRects;
- }
- /// <summary>
- /// 返回设置范围内的轮廓
- /// </summary>
- /// <param name="mat"></param>
- /// <param name="range1"></param>
- /// <param name="range2"></param>
- /// <param name="contourCount"></param>
- /// <returns></returns>
- public Point[][] GetImageContours(Mat mat, int length, out List<int> contourCount)
- {
- List<double> arclength = new List<double>();
- OpenCvSharp.Point[][] contours;
- HierarchyIndex[] hierarchies;
- //Cv2.ImShow(",mmmm", mat);
- Cv2.FindContours(mat, out contours, out hierarchies, RetrievalModes.External, ContourApproximationModes.ApproxSimple, new Point());
- Mat connImg = Mat.Zeros(mat.Size(), MatType.CV_8UC3);
- Point2f[] vertices = new Point2f[4];
- Mat drawOutline = Mat.Zeros(mat.Size(), mat.Type());
- int sum = 0;
- contourCount = new List<int>();
- for (int i = 0; i < contours.Length; i++)
- {
- Rect rect1 = Cv2.BoundingRect(contours[i]);
- if (Cv2.ArcLength(contours[i], true) > length)//(rect1.Width > range1 && rect1.Height < range2)
- {
- Cv2.DrawContours(drawOutline, contours, i, new Scalar(255, 0, 255), 2, LineTypes.Link8, hierarchies);
- contourCount.Add(i);
- arclength.Add(Cv2.ArcLength(contours[i], true));
- sum++;
- }
- }
- Cv2.ImShow("contours", drawOutline);
- return contours;
- }
-
-
-
- /// <summary>
- /// 图像灰度
- /// 盒子滤波 保留边缘信息
- /// 自适应阈值 效果不错 无需形态学降噪
- /// 取反操作
- /// 过滤不需要轮廓信息(面积 边长)
- /// 轮廓提取
- /// (以上每一步都很重要,否则,无法获取良好的轮廓)
- /// 凸包检测
- /// 根据轮廓信息,查找大凸包,获取分割点
- /// 重新操作图像
- /// 在二值化图像时,分割连接点位置
- /// 绘制轮廓
- /// 绘制最小内接矩形和质心点
- /// 识别目标位置完成
- /// 注意:不同大小的图像处理时,需要修改自适应阈值参数、轮廓过滤面积、凸包检测的分割点过滤
- /// </summary>
- /// <param name="srcImage"></param>
- /// <returns></returns>
- public Mat PreProcess(Mat srcImage)
- {
- Mat grayMat = new Mat();
- Cv2.CvtColor(srcImage, grayMat, ColorConversionCodes.BGRA2GRAY);
- //Cv2.ImShow("grayMat", grayMat);
-
- Mat blurImg = BoxFilter(grayMat);
- //Cv2.ImShow("blurImg", blurImg);
-
- // 注意:不同大小的图像处理时,需要修改参数
- Mat threshold = new Mat();
- Cv2.AdaptiveThreshold(blurImg, threshold, 255, AdaptiveThresholdTypes.MeanC, ThresholdTypes.Binary, 15, 2);
- //Cv2.Threshold(threshold, threshold, 0, 255, ThresholdTypes.BinaryInv);
- Cv2.ImShow("threshold", threshold);
-
-
- //Mat morphImg = MorphImage(threshold, MorphShapes.Ellipse, MorphTypes.Dilate, 1, new OpenCvSharp.Size(3, 3));
- //Cv2.ImShow("morphImg", morphImg);
-
- //Mat cannyImg = new Mat();
- //Cv2.Laplacian(morphImg2, cannyImg, MatType.CV_8UC3, 5, 1);//Cv2.Canny(morphImg, cannyImg, 30, 90);//3和4参数的 最佳比例在1/3和1/2之间
- //Cv2.ImShow("cannyImg", cannyImg);
-
- Mat bitwiseMat = new Mat();
- Cv2.BitwiseNot(threshold, bitwiseMat);
- Cv2.ImShow("bitwiseMat", bitwiseMat);
-
- List<int> contourCount;
- //轮廓提取
- Point[][] contours = GetImageContours(bitwiseMat, 600, out contourCount);
- //凸包检测
- List<Point> lps = GetSplitPoints(contours, contourCount, 800, 4500);
-
-
- // 注意:不同大小的图像处理时,需要修改参数
- //重新处理
- Cv2.AdaptiveThreshold(blurImg, threshold, 255.0, AdaptiveThresholdTypes.MeanC, ThresholdTypes.Binary, 13, 2);
- Cv2.ImShow("threshold1", threshold);
-
- //MorphImage(threshold, MorphShapes.Ellipse, MorphTypes.Close, 1, new OpenCvSharp.Size(3, 3));
- //Cv2.ImShow("morphImg1", morphImg);
-
- Cv2.BitwiseNot(threshold, bitwiseMat);
- Cv2.ImShow("bitwiseMat1", bitwiseMat);
- //提取凸显点坐标
-
- if (lps.Count > 1)
- {
- Cv2.Line(bitwiseMat, lps[0], lps[1], Scalar.Black, 2, LineTypes.Link8);
- }
- Cv2.ImShow("bitwiseMat2", bitwiseMat);
- //轮廓提取
- contourCount.Clear(); // 注意:不同大小的图像处理时,需要修改length参数
- Point[][] newContours = GetImageContours(bitwiseMat, 550, out contourCount);
- List<RotatedRect> rotatedRects = GetMinRects(newContours, contourCount);
-
- for (int i = 0; i < rotatedRects.Count; i++)
- {
- #region 绘制Rio区域最小矩形
- Point2f[] vertices = rotatedRects[i].Points();
- #endregion
- //绘制最小矩形
- #region 绘制最小矩形
- Cv2.Line(srcImage, Convert.ToInt32(vertices[0].X), Convert.ToInt32(vertices[0].Y), Convert.ToInt32(vertices[1].X), Convert.ToInt32(vertices[1].Y), new Scalar(0, 0, 255), 2);
- Cv2.Line(srcImage, Convert.ToInt32(vertices[0].X), Convert.ToInt32(vertices[0].Y), Convert.ToInt32(vertices[3].X), Convert.ToInt32(vertices[3].Y), new Scalar(0, 0, 255), 2);
- Cv2.Line(srcImage, Convert.ToInt32(vertices[1].X), Convert.ToInt32(vertices[1].Y), Convert.ToInt32(vertices[2].X), Convert.ToInt32(vertices[2].Y), new Scalar(0, 0, 255), 2);
- Cv2.Line(srcImage, Convert.ToInt32(vertices[2].X), Convert.ToInt32(vertices[2].Y), Convert.ToInt32(vertices[3].X), Convert.ToInt32(vertices[3].Y), new Scalar(0, 0, 255), 2);
- //获取重心点
- Moments M;
- M = Cv2.Moments(vertices);
- double cX = M.M10 / M.M00;
- double cY = M.M01 / M.M00;
- //显示目标中心并提取坐标点
- Cv2.Circle(srcImage, (int)cX, (int)cY, 2, Scalar.Yellow, 2);
- //Console.WriteLine("AngleRect_angle: {0}", minRect.Angle);
- #endregion
- }
- Cv2.ImShow("srcImage", srcImage);
- return null;
- }
-
灰度图像后图像二值化:
图像取反
绘制轮廓
凸包检测,查找分割点,下图黄色点标记处即找到的分割点位置
将找到的分割点在二值化图像中,连接一条线后,重新轮廓识别即可分割
最小轮廓矩形提取和绘制,以及绘制质心位置
到此,已将连接处分隔开
注意:使用以上方法是需要根据图像大小设置部分参数,例如二值化处理参数、过滤轮廓形状大小,凸包检测点的获取等位置,需要根据实际情况设置参数;
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。