当前位置:   article > 正文

pointnet推理部署--libtorch框架_pointnet_pointnet2_pytorch

pointnet_pointnet2_pytorch

由于tensorflow编译C++的api比较麻烦,此次部署的pointnet代码的Python版本为Pytorch编写的。
代码:Pointnet_Pointnet2_pytorch
环境配置:win10系统
cuda10.1+cudnn7.5+Python3.6.5+pytorch1.5.0+libtorch1.5.0+VS2017
或者libtorch1.4.0+VS2015
软件下载和配置过程在此不赘述。
2023/04/15更新:新增semantic segmentation部分,统一代码风格等。
2023/05/15更新:由于gpu换为RTX30系,更换环境配置为cuda11.1+cudnn8.0.4+python3.7.16+pytorch1.8.0+libtorch1.8.0+VS2019,以及torchscipt转换文件下载更新。

ps:30系gpu只能安装cuda11以上,其他配置pytorch和libtorch的版本对应即可(貌似高版本libtorch兼容低版本pytorch,但有概率会出问题),libtorch1.5.0(需要支持C++14)之后不兼容VS2015。别问LZ怎么知道的,这些都是泪呀。

classification

pytorch训练得到的pth文件转libtorch使用的pt文件脚本(以分10类,gpu版本为例):
torchscript.py

import torch
import pointnet_cls


point_num = 1024
class_num = 10
normal_channel = False

model = pointnet_cls.get_model(class_num , normal_channel)
model = model.cuda() #cpu版本需注释此句
model.eval()
checkpoint = torch.load('cls.pth')
model.load_state_dict(checkpoint['model_state_dict'])

x = (torch.rand(1, 6, point_num) if normal_channel else torch.rand(1, 3, point_num))
x = x.cuda() #cpu版本需注释此句
traced_script_module = torch.jit.trace(model, x)
traced_script_module.save("cls.pt")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

python推理代码:

import numpy as np
import torch
import pointnet_cls


point_num = 1024
class_num = 10

 
def pc_normalize(pc):
    centroid = np.mean(pc, axis=0)
    pc = pc - centroid
    m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
    pc = pc / m
    return pc


if __name__ == '__main__':
    data = np.loadtxt('./bed_0610.txt', delimiter=',').astype(np.float32)
    point_set = data[:, 0:3]
    point_set = point_set[0:point_num, :]     
    point_set[:, 0:3] = pc_normalize(point_set[:, 0:3])

    points = torch.from_numpy(point_set)
    points = torch.reshape(points,((1, point_num, 3)))
    
    model = pointnet_cls.get_model(class_num, normal_channel=False)
    model = model.cuda() 
    checkpoint = torch.load('cls.pth')
    model.load_state_dict(checkpoint['model_state_dict'])

    with torch.no_grad():
        model = model.eval()
        points = points.transpose(2, 1).cuda()
        pred, _ = model(points)    
        pred_choice = pred.data.max(1)[1]
        pred_list = pred_choice.cpu().numpy().tolist()
        print(pred_list)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

C++推理代码:

#include <iostream>
#include <vector>
#include <fstream>
#include <torch/script.h>


const int point_num = 1024;


void pc_normalize(std::vector<float>& points)
{
	float mean_x = 0, mean_y = 0, mean_z = 0;
	for (size_t i = 0; i < point_num; ++i)
	{
		mean_x += points[3 * i];
		mean_y += points[3 * i + 1];
		mean_z += points[3 * i + 2];
	}
	mean_x /= point_num;
	mean_y /= point_num;
	mean_z /= point_num;

	for (size_t i = 0; i < point_num; ++i)
	{
		points[3 * i] -= mean_x;
		points[3 * i + 1] -= mean_y;
		points[3 * i + 2] -= mean_z;
	}

	float m = 0;
	for (size_t i = 0; i < point_num; ++i)
	{
		if (sqrt(pow(points[3 * i], 2) + pow(points[3 * i + 1], 2) + pow(points[3 * i + 2], 2)) > m)
			m = sqrt(pow(points[3 * i], 2) + pow(points[3 * i + 1], 2) + pow(points[3 * i + 2], 2));
	}

	for (size_t i = 0; i < point_num; ++i)
	{
		points[3 * i] /= m;
		points[3 * i + 1] /= m;
		points[3 * i + 2] /= m;
	}
}


void classfier(std::vector<float> & points)
{
	torch::Tensor points_tensor = torch::from_blob(points.data(), { 1, point_num, 3 }, torch::kFloat);
	points_tensor = points_tensor.to(torch::kCUDA);
	points_tensor = points_tensor.permute({ 0, 2, 1 });

	torch::jit::script::Module module = torch::jit::load("cls.pt");
	module.to(torch::kCUDA);

	auto outputs = module.forward({ points_tensor }).toTuple();
	torch::Tensor out0 = outputs->elements()[0].toTensor();
	std::cout << out0 << std::endl;

	auto max_classes = out0.max(1);
	auto max_index = std::get<1>(max_classes).item<int>();
	std::cout << max_index << std::endl;
}


int main()
{
	std::vector<float> points;
	float x, y, z, nx, ny, nz;
	char ch;
	std::ifstream infile("bed_0610.txt");
	for (size_t i = 0; i < point_num; i++)
	{
		infile >> x >> ch >> y >> ch >> z >> ch >> nx >> ch >> ny >> ch >> nz;
		points.push_back(x);
		points.push_back(y);
		points.push_back(z);
	}
	infile.close();

	pc_normalize(points);

	classfier(points);

	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85

预测结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
预测类别为1,在names.txt中对应为bed,结果正确。
C++推理速度稳定在不到0.2s,相比Python推理速度1~2s快了很多。

part segmentation

pytorch训练得到的pth文件转libtorch使用的pt文件脚本(以16类物体分成50部分,gpu版本为例):
torchscript.py

import torch
import pointnet_part_seg


point_num = 2048
class_num = 16
part_num = 50
normal_channel = False

def to_categorical(y, class_num):
    """ 1-hot encodes a tensor """
    new_y = torch.eye(class_num)[y.cpu().data.numpy(),]
    if (y.is_cuda):
        return new_y.cuda()
    return new_y

model = pointnet_part_seg.get_model(part_num, normal_channel)
model = model.cuda() #cpu版本需注释此句
model.eval()
checkpoint = torch.load('part_seg.pth')
model.load_state_dict(checkpoint['model_state_dict'])

x = (torch.rand(1, 6, point_num) if normal_channel else torch.rand(1, 3, point_num))
x = x.cuda() #cpu版本需注释此句
label = torch.randint(0, 1, (1, 1))
label = label.cuda() #cpu版本需注释此句
traced_script_module = torch.jit.trace(model, (x, to_categorical(label, class_num)))
traced_script_module.save("part_seg.pt")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

python推理代码:

import torch
import numpy as np
import pointnet_part_seg


point_num = 2048
class_num = 16
part_num = 50


def to_categorical(y, class_num):
    """ 1-hot encodes a tensor """
    new_y = torch.eye(class_num)[y.cpu().data.numpy(),]
    if (y.is_cuda):
        return new_y.cuda()
    return new_y


def pc_normalize(pc):
    centroid = np.mean(pc, axis=0)
    pc = pc - centroid
    m = np.max(np.sqrt(np.sum(pc ** 2, axis=1)))
    pc = pc / m
    return pc


if __name__ == '__main__':
    data = np.loadtxt('85a15c26a6e9921ae008cc4902bfe3cd.txt').astype(np.float32)
    point_set = data[:, 0:3]
    point_set[:, 0:3] = pc_normalize(point_set[:, 0:3])

    choice = np.random.choice(point_set.shape[0], point_num, replace=True)
    point_set = point_set[choice, :][:, 0:3]
    pts = point_set

    points = torch.from_numpy(point_set)
    points = torch.reshape(points,((1, point_num, 3)))
    label = torch.tensor([[0]], dtype=torch.int32)

    model = pointnet_part_seg.get_model(part_num, normal_channel=False)
    model = model.cuda() 
    checkpoint = torch.load('part_seg.pth')
    model.load_state_dict(checkpoint['model_state_dict'])

    with torch.no_grad():
        model = model.eval()

        points, label = points.float().cuda(), label.long().cuda()
        cloud = points.cpu().data.numpy()
        points = points.transpose(2, 1)

        seg_pred, _ = model(points, to_categorical(label, class_num))

        cur_pred_val = seg_pred.cpu().data.numpy()
        cur_pred_val_logits = cur_pred_val
        cur_pred_val = np.zeros((1, point_num)).astype(np.int32)
        
        logits = cur_pred_val_logits[0, :, :]
        cur_pred_val[0, :] = np.argmax(logits, 1)

        pts = np.append(cloud.reshape(point_num, 3), cur_pred_val[0, :].reshape(point_num, 1), 1)
        np.savetxt('pred.txt', pts, fmt='%.06f')       
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62

C++推理代码:

#include <iostream>
#include <vector>
#include <fstream>
#include <torch/script.h>


const int point_num = 2048;
const int class_num = 16;


void pc_normalize(std::vector<float>& points)
{
	float mean_x = 0, mean_y = 0, mean_z = 0;
	for (size_t i = 0; i < point_num; ++i)
	{
		mean_x += points[3 * i];
		mean_y += points[3 * i + 1];
		mean_z += points[3 * i + 2];
	}
	mean_x /= point_num;
	mean_y /= point_num;
	mean_z /= point_num;

	for (size_t i = 0; i < point_num; ++i)
	{
		points[3 * i] -= mean_x;
		points[3 * i + 1] -= mean_y;
		points[3 * i + 2] -= mean_z;
	}

	float m = 0;
	for (size_t i = 0; i < point_num; ++i)
	{
		if (sqrt(pow(points[3 * i], 2) + pow(points[3 * i + 1], 2) + pow(points[3 * i + 2], 2)) > m)
			m = sqrt(pow(points[3 * i], 2) + pow(points[3 * i + 1], 2) + pow(points[3 * i + 2], 2));
	}

	for (size_t i = 0; i < point_num; ++i)
	{
		points[3 * i] /= m;
		points[3 * i + 1] /= m;
		points[3 * i + 2] /= m;
	}
}


void resample(std::vector<float> & points)
{
	srand((int)time(0));
	std::vector<int> choice(point_num);
	for (size_t i = 0; i < point_num; i++)
	{
		choice[i] = rand() % (points.size() / 3);
	}

	std::vector<float> temp_points(3 * point_num);
	for (size_t i = 0; i < point_num; i++)
	{
		temp_points[3 * i] = points[3 * choice[i]];
		temp_points[3 * i + 1] = points[3 * choice[i] + 1];
		temp_points[3 * i + 2] = points[3 * choice[i] + 2];
	}
	points = temp_points;
}


at::Tensor classfier(std::vector<float> & points, std::vector<float> & labels)
{
	torch::Tensor points_tensor = torch::from_blob(points.data(), { 1, point_num, 3 }, torch::kFloat);
	torch::Tensor labels_tensor = torch::from_blob(labels.data(), { 1, 1, class_num }, torch::kFloat);

	points_tensor = points_tensor.to(torch::kCUDA);
	points_tensor = points_tensor.permute({ 0, 2, 1 });
	labels_tensor = labels_tensor.to(torch::kCUDA);

	torch::jit::script::Module module = torch::jit::load("part_seg.pt");
	module.to(torch::kCUDA);

	auto outputs = module.forward({ points_tensor, labels_tensor }).toTuple();
	torch::Tensor out0 = outputs->elements()[0].toTensor();
	out0 = torch::squeeze(out0);

	auto max_classes = out0.max(1);
	auto max_result = std::get<0>(max_classes);
	auto max_index = std::get<1>(max_classes);

	return max_index;
}


int main()
{
	std::vector<float> points, labels;
	float x, y, z, nx, ny, nz, label;
	std::ifstream infile("85a15c26a6e9921ae008cc4902bfe3cd.txt");
	while (infile >> x >> y >> z >> nx >> ny >> nz >> label)
	{
		points.push_back(x);
		points.push_back(y);
		points.push_back(z);
	}
	for (size_t i = 0; i < class_num; i++)
	{
		labels.push_back(0.0);
	}
	labels[0] = 1.0;

	infile.close();

	pc_normalize(points);

	resample(points);

	at::Tensor result = classfier(points, labels);

	std::fstream outfile("pred.txt", 'w');
	for (size_t i = 0; i < point_num; i++)
	{
		outfile << points[3 * i] << " " << points[3 * i + 1] << " " << points[3 * i + 2] << " " << result[i].item<int>() << std::endl;
	}
	outfile.close();

	return 0;
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125

预测结果:在这里插入图片描述

semantic segmentation

pytorch训练得到的pth文件转libtorch使用的pt文件脚本(以13类物体,gpu版本为例):
torchscript.py

import torch
import pointnet_sem_seg


point_num = 4096
class_num = 13

model = pointnet_sem_seg.get_model(class_num)
model = model.cuda() #cpu版本需注释此句
model.eval()
checkpoint = torch.load('sem_seg.pth')
model.load_state_dict(checkpoint['model_state_dict'])

x = torch.rand(1, 9, point_num)
x = x.cuda() #cpu版本需注释此句
traced_script_module = torch.jit.trace(model, x)
traced_script_module.save("sem_seg.pt")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

python推理代码:

import torch
import numpy as np
import pointnet_sem_seg


num_point = 4096
class_num = 13
stride = 0.5
block_size = 1.0


if __name__ == '__main__':
    data = np.load('Area_1_conferenceRoom_1.npy')
    points = data[:,:6]
    coord_min, coord_max = np.amin(points, axis=0)[:3], np.amax(points, axis=0)[:3]
    grid_x = int(np.ceil(float(coord_max[0] - coord_min[0] - block_size) / stride) + 1)
    grid_y = int(np.ceil(float(coord_max[1] - coord_min[1] - block_size) / stride) + 1)
    data_room, index_room = np.array([]), np.array([])
    for index_y in range(0, grid_y):
        for index_x in range(0, grid_x):
            s_x = coord_min[0] + index_x * stride
            e_x = min(s_x + block_size, coord_max[0])
            s_x = e_x - block_size
            s_y = coord_min[1] + index_y * stride
            e_y = min(s_y + block_size, coord_max[1])
            s_y = e_y - block_size
            point_idxs = np.where((points[:, 0] >= s_x) & (points[:, 0] <= e_x) & (points[:, 1] >= s_y) & (points[:, 1] <= e_y))[0]
            if point_idxs.size == 0:
                continue
            num_batch = int(np.ceil(point_idxs.size / num_point))
            point_size = int(num_batch * num_point)
            replace = False if (point_size - point_idxs.size <= point_idxs.size) else True
            point_idxs_repeat = np.random.choice(point_idxs, point_size - point_idxs.size, replace=replace)
            point_idxs = np.concatenate((point_idxs, point_idxs_repeat))
            np.random.shuffle(point_idxs)
            data_batch = points[point_idxs, :]
            normlized_xyz = np.zeros((point_size, 3)) #(73728, 3)
            normlized_xyz[:, 0] = data_batch[:, 0] / coord_max[0]
            normlized_xyz[:, 1] = data_batch[:, 1] / coord_max[1]
            normlized_xyz[:, 2] = data_batch[:, 2] / coord_max[2]
            data_batch[:, 0] = data_batch[:, 0] - (s_x + block_size / 2.0)
            data_batch[:, 1] = data_batch[:, 1] - (s_y + block_size / 2.0)
            data_batch[:, 3:6] /= 255.0
            data_batch = np.concatenate((data_batch, normlized_xyz), axis=1)
            data_room = np.vstack([data_room, data_batch]) if data_room.size else data_batch
            index_room = np.hstack([index_room, point_idxs]) if index_room.size else point_idxs 
    data_room = data_room.reshape((-1, num_point, data_room.shape[1]))
    index_room = index_room.reshape((-1, num_point))

    model = pointnet_sem_seg.get_model(class_num)
    model = model.cuda()
    checkpoint = torch.load('sem_seg.pth')
    model.load_state_dict(checkpoint['model_state_dict'])
    model = model.eval()

    with torch.no_grad():
        vote_label_pool = np.zeros((points.shape[0], class_num))
        num_blocks = data_room.shape[0]
        batch_data = np.zeros((1, num_point, 9))
        batch_point_index = np.zeros((1, num_point))

        for sbatch in range(num_blocks):
            start_idx = sbatch
            end_idx = min(sbatch + 1, num_blocks)
            real_batch_size = end_idx - start_idx
            batch_data[0:real_batch_size, ...] = data_room[start_idx:end_idx, ...]
            batch_point_index[0:real_batch_size, ...] = index_room[start_idx:end_idx, ...]

            torch_data = torch.Tensor(batch_data)
            torch_data = torch_data.float().cuda()
            torch_data = torch_data.transpose(2, 1)
            seg_pred, _ = model(torch_data)
            batch_pred_label = seg_pred.contiguous().cpu().data.max(2)[1].numpy()

            point_idx = batch_point_index[0:real_batch_size, ...]
            pred_label = batch_pred_label[0:real_batch_size, ...]
            for b in range(pred_label.shape[0]):
                for n in range(pred_label.shape[1]):
                        vote_label_pool[int(point_idx[b, n]), int(pred_label[b, n])] += 1

        pred = np.argmax(vote_label_pool, 1)
        fout = open('pred.txt', 'w')
        for i in range(points.shape[0]):
            fout.write('%f %f %f %d\n' % (points[i, 0], points[i, 1], points[i, 2], pred[i]))
        fout.close()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85

C++推理代码:

#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>
#include <ctime>
#include <random>
#include <torch/script.h>


const int point_num = 4096;
const int class_num = 13;
const float stride = 0.5;
const float block_size = 1.0;


struct point
{
	float m_x, m_y, m_z, m_r, m_g, m_b, m_normal_x, m_normal_y, m_normal_z;
	point() :
		m_x(0), m_y(0), m_z(0), m_r(0), m_g(0), m_b(0), m_normal_x(0), m_normal_y(0), m_normal_z(0) {}
	point(float x, float y, float z, float r, float g, float b) :
		m_x(x), m_y(y), m_z(z), m_r(r), m_g(g), m_b(b), m_normal_x(0), m_normal_y(0), m_normal_z(0) {}
	point(float x, float y, float z, float r, float g, float b, float normal_x, float normal_y, float normal_z) :
		m_x(x), m_y(y), m_z(z), m_r(r), m_g(g), m_b(b), m_normal_x(normal_x), m_normal_y(normal_y), m_normal_z(normal_z) {}
};


int main()
{
	std::ifstream infile("Area_1_conferenceRoom_1.txt");
	float x, y, z, r, g, b, l;
	std::vector<point> pts;
	std::vector<float> points_x, points_y, points_z;
	int points_num = 0;
	while (infile >> x >> y >> z >> r >> g >> b >> l)
	{
		point pt(x, y, z, r, g, b);
		pts.push_back(pt);
		points_x.push_back(x);
		points_y.push_back(y);
		points_z.push_back(z);
		points_num++;
	}

	float x_min = *std::min_element(points_x.begin(), points_x.end());
	float y_min = *std::min_element(points_y.begin(), points_y.end());
	float z_min = *std::min_element(points_z.begin(), points_z.end());
	float x_max = *std::max_element(points_x.begin(), points_x.end());
	float y_max = *std::max_element(points_y.begin(), points_y.end());
	float z_max = *std::max_element(points_z.begin(), points_z.end());

	int grid_x = ceil((x_max - x_min - block_size) / stride) + 1;
	int grid_y = ceil((y_max - y_min - block_size) / stride) + 1;

	std::vector<point> data_room;
	std::vector<int> index_room;
	srand((int)time(0));
	for (size_t index_y = 0; index_y < grid_y; index_y++)
	{
		for (size_t index_x = 0; index_x < grid_x; index_x++)
		{
			float s_x = x_min + index_x * stride;
			float e_x = std::min(s_x + block_size, x_max);
			s_x = e_x - block_size;
			float s_y = y_min + index_y * stride;
			float e_y = std::min(s_y + block_size, y_max);
			s_y = e_y - block_size;

			std::vector<int> point_idxs;
			for (size_t i = 0; i < points_num; i++)
			{
				if (points_x[i] >= s_x && points_x[i] <= e_x && points_y[i] >= s_y && points_y[i] <= e_y)
					point_idxs.push_back(i);
			}
			if (point_idxs.size() == 0)
				continue;

			int num_batch = ceil(point_idxs.size() * 1.0 / point_num);
			int point_size = num_batch * point_num;
			bool replace = (point_size - point_idxs.size() <= point_idxs.size() ? false : true);

			std::vector<int> point_idxs_repeat;
			if (replace)
			{
				for (size_t i = 0; i < point_size - point_idxs.size(); i++)
				{
					int id = rand() % point_idxs.size();
					point_idxs_repeat.push_back(point_idxs[id]);
				}
			}
			else
			{
				std::vector<bool> flags(pts.size(), false);
				for (size_t i = 0; i < point_size - point_idxs.size(); i++)
				{
					int id = rand() % point_idxs.size();
					while (true)
					{
						if (flags[id] == false)
						{
							flags[id] = true;
							break;
						}
						id = rand() % point_idxs.size();
					}
					point_idxs_repeat.push_back(point_idxs[id]);
				}
			}
			point_idxs.insert(point_idxs.end(), point_idxs_repeat.begin(), point_idxs_repeat.end());

			std::random_device rd;
			std::mt19937 g(rd());	// 随机数引擎:基于梅森缠绕器算法的随机数生成器
			std::shuffle(point_idxs.begin(), point_idxs.end(), g);	// 打乱顺序,重新排序(随机序列)

			std::vector<point> data_batch;
			for (size_t i = 0; i < point_idxs.size(); i++)
			{
				data_batch.push_back(pts[point_idxs[i]]);
			}

			for (size_t i = 0; i < point_size; i++)
			{
				data_batch[i].m_normal_x = data_batch[i].m_x / x_max;
				data_batch[i].m_normal_y = data_batch[i].m_y / y_max;
				data_batch[i].m_normal_z = data_batch[i].m_z / z_max;
				data_batch[i].m_x -= (s_x + block_size / 2.0);
				data_batch[i].m_y -= (s_y + block_size / 2.0);
				data_batch[i].m_r /= 255.0;
				data_batch[i].m_g /= 255.0;
				data_batch[i].m_b /= 255.0;
				data_room.push_back(data_batch[i]);
				index_room.push_back(point_idxs[i]);
			}
		}
	}

	int n = point_num, m = index_room.size() / n;
	std::vector<std::vector<point>> data_rooms(m, std::vector<point>(n, point()));
	std::vector<std::vector<int>> index_rooms(m, std::vector<int>(n, 0));
	for (size_t i = 0; i < m; i++)
	{
		for (size_t j = 0; j < n; j++)
		{
			data_rooms[i][j] = data_room[i * n + j];
			index_rooms[i][j] = index_room[i * n + j];
		}
	}

	std::vector<std::vector<int>> vote_label_pool(points_num, std::vector<int>(class_num, 0));
	int num_blocks = data_rooms.size();

	torch::jit::script::Module module = torch::jit::load("sem_seg.pt");
	module.to(torch::kCUDA);

	for (int sbatch = 0; sbatch < num_blocks; sbatch++)
	{
		int start_idx = sbatch;
		int end_idx = std::min(sbatch + 1, num_blocks);
		int real_batch_size = end_idx - start_idx;
		std::vector<point> batch_data = data_rooms[start_idx];
		std::vector<int> point_idx = index_rooms[start_idx];
		std::vector<float> batch(point_num * 9);
		for (size_t i = 0; i < point_num; i++)
		{
			batch[9 * i + 0] = batch_data[i].m_x;
			batch[9 * i + 1] = batch_data[i].m_y;
			batch[9 * i + 2] = batch_data[i].m_z;
			batch[9 * i + 3] = batch_data[i].m_r;
			batch[9 * i + 4] = batch_data[i].m_g;
			batch[9 * i + 5] = batch_data[i].m_b;
			batch[9 * i + 6] = batch_data[i].m_normal_x;
			batch[9 * i + 7] = batch_data[i].m_normal_y;
			batch[9 * i + 8] = batch_data[i].m_normal_z;
		}

		torch::Tensor inputs = torch::from_blob(batch.data(), { 1, point_num, 9 }, torch::kFloat);
		inputs = inputs.to(torch::kCUDA);
		inputs = inputs.permute({ 0, 2, 1 });

		auto outputs = module.forward({ inputs }).toTuple();
		torch::Tensor out0 = outputs->elements()[0].toTensor();

		auto max_index = std::get<1>(torch::max(out0, 2));
		max_index = torch::squeeze(max_index).to(torch::kCPU).to(torch::kInt);

		std::vector<int> pred_label(max_index.data_ptr<int>(), max_index.data_ptr<int>() + max_index.numel());
		for (size_t i = 0; i < pred_label.size(); i++)
		{
			vote_label_pool[point_idx[i]][pred_label[i]] += 1;
		}	
	}

	std::ofstream outfile("pred.txt");
	for (size_t i = 0; i < points_num; i++)
	{
		int max_index = std::max_element(vote_label_pool[i].begin(), vote_label_pool[i].end()) - vote_label_pool[i].begin();
		outfile << pts[i].m_x << " " << pts[i].m_y << " " << pts[i].m_z << " " << max_index << std::endl;
	}

	outfile.close();
	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202

注意,由于C++无法直接读取npy格式文件(可以依赖一些库),这里先使用python脚本将npy文件转换成txt文件。

import numpy as np

npy = np.load("Area_1_conferenceRoom_1.npy")
np.savetxt('Area_1_conferenceRoom_1.txt', npy, fmt='%0.06f')
  • 1
  • 2
  • 3
  • 4

预测结果:在这里插入图片描述

参考:Libtorch部署模型
在C+中部署python(libtoch)模型的方法总结+,PytorchLibtorch,Win10VS2017
A simple C++ implementation of Charles Qi’s PointNet

模型的下载地址:pointnet模型权重

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/115908?site
推荐阅读
相关标签
  

闽ICP备14008679号