当前位置:   article > 正文

如何将照片美化,DPED机器学习开源项目安装使用 | 机器学习

dped

目录

前言

环境部署

项目结构

tensorflow安装

其他依赖安装

VGG-19下载

项目运行

准备图片素材

测试效果

总结


前言

最近发现了一个可以把照片美化的项目,自己玩了玩,挺有意思的,分享一下。

Github地址:DPED项目地址

下面来看看项目怎么玩?先放一些项目给出的效果图。可以看出照片更明亮好看了。

 

环境部署

项目结构

下面是项目的原始结构:

tensorflow安装

按照项目的说明,我们需要安装tensorflow以及一些必要的库。

 

如果安装gpu版本的tensorflow需要对照一下

tensorflow官方对照地址:TensorFlow官方CUDA版本对照

我的cuda是11.1的版本,按照tensorflow后还是缺少部分dll,如果有相同问题的,可以用我提供的资源包: https://pan.baidu.com/s/1IUm8xz5dhh8iW_bLWfihPQ  提取码:TUAN。

缺少哪个dll,直接复制到你的NVIDIA GPU Computing Toolkit目录对应cuda的bin目录下。

 

按照自己的版本来,我的tensorflow命令如下:

  1. pip install tensorflow-gpu==2.4.2 -i https://pypi.douban.com/simple
  2. pip install tf-nightly -i https://pypi.douban.com/simple

其他依赖安装

Pillow, scipy, numpy, imageio安装

  1. pip install Pillow -i https://pypi.douban.com/simple
  2. pip install scipy -i https://pypi.douban.com/simple
  3. pip install numpy -i https://pypi.douban.com/simple
  4. pip install imageio -i https://pypi.douban.com/simple

VGG-19下载

因为模型文件太大,github的项目中无法上传这么大的文件,作者让我们自己下。

我把DPED的资源包统一打包了,也可以从我的云盘下载, 放到项目的vgg_pretrained目录下。下图是资源包的目录

 

资源包地址: https://pan.baidu.com/s/1IUm8xz5dhh8iW_bLWfihPQ  提取码:TUAN。

项目运行

项目需要的环境我们都装好了,我们跳过训练的部分,测试model的方法官方给出了命令。

准备图片素材

我准备了几张图,就不全展示了,展示其中的一张。

 

按照项目的要求,需要放在对应的目录下。

测试效果

执行命令

python test_model.py model=iphone_orig test_subset=full resolution=orig use_gpu=true

执行过程

  1. (tensorflow) C:\Users\yi\PycharmProjects\DPED>python test_model.py model=iphone_orig test_subset=full resolution=orig use_gpu=true
  2. 2021-11-27 23:42:57.922965: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudart64_110.dll
  3. 2021-11-27 23:43:00.532645: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to
  4. use the following CPU instructions in performance-critical operations: AVX2
  5. To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
  6. 2021-11-27 23:43:00.535946: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library nvcuda.dll
  7. 2021-11-27 23:43:00.559967: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:
  8. pciBusID: 0000:01:00.0 name: GeForce GTX 1070 computeCapability: 6.1
  9. coreClock: 1.759GHz coreCount: 15 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 238.66GiB/s
  10. 2021-11-27 23:43:00.560121: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudart64_110.dll
  11. 2021-11-27 23:43:00.577706: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublas64_11.dll
  12. 2021-11-27 23:43:00.577812: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublasLt64_11.dll
  13. 2021-11-27 23:43:00.588560: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cufft64_10.dll
  14. 2021-11-27 23:43:00.591950: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library curand64_10.dll
  15. 2021-11-27 23:43:00.614412: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusolver64_10.dll
  16. 2021-11-27 23:43:00.624267: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusparse64_11.dll
  17. 2021-11-27 23:43:00.626309: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudnn64_8.dll
  18. 2021-11-27 23:43:00.626481: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0
  19. 2021-11-27 23:43:01.112598: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1261] Device interconnect StreamExecutor with strength 1 edge matrix:
  20. 2021-11-27 23:43:01.112756: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1267] 0
  21. 2021-11-27 23:43:01.113098: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1280] 0: N
  22. 2021-11-27 23:43:01.113463: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1406] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6720 MB
  23. memory) -> physical GPU (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1)
  24. 2021-11-27 23:43:01.114296: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set
  25. WARNING:tensorflow:From C:\Users\yi\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\compat\v2_compat.py:96: disable_resource_variables (from tensorflow.p
  26. ython.ops.variable_scope) is deprecated and will be removed in a future version.
  27. Instructions for updating:
  28. non-resource variables are not supported in the long term
  29. 2021-11-27 23:43:01.478512: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set
  30. 2021-11-27 23:43:01.479339: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:
  31. pciBusID: 0000:01:00.0 name: GeForce GTX 1070 computeCapability: 6.1
  32. coreClock: 1.759GHz coreCount: 15 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 238.66GiB/s
  33. 2021-11-27 23:43:01.479747: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudart64_110.dll
  34. 2021-11-27 23:43:01.480519: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublas64_11.dll
  35. 2021-11-27 23:43:01.480927: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublasLt64_11.dll
  36. 2021-11-27 23:43:01.481155: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cufft64_10.dll
  37. 2021-11-27 23:43:01.481568: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library curand64_10.dll
  38. 2021-11-27 23:43:01.481823: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusolver64_10.dll
  39. 2021-11-27 23:43:01.482188: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusparse64_11.dll
  40. 2021-11-27 23:43:01.482416: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudnn64_8.dll
  41. 2021-11-27 23:43:01.482638: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0
  42. 2021-11-27 23:43:01.482959: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:
  43. pciBusID: 0000:01:00.0 name: GeForce GTX 1070 computeCapability: 6.1
  44. coreClock: 1.759GHz coreCount: 15 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 238.66GiB/s
  45. 2021-11-27 23:43:01.483077: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudart64_110.dll
  46. 2021-11-27 23:43:01.483254: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublas64_11.dll
  47. 2021-11-27 23:43:01.483426: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublasLt64_11.dll
  48. 2021-11-27 23:43:01.483638: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cufft64_10.dll
  49. 2021-11-27 23:43:01.483817: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library curand64_10.dll
  50. 2021-11-27 23:43:01.484052: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusolver64_10.dll
  51. 2021-11-27 23:43:01.484250: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusparse64_11.dll
  52. 2021-11-27 23:43:01.484433: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudnn64_8.dll
  53. 2021-11-27 23:43:01.484662: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0
  54. 2021-11-27 23:43:01.484841: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1261] Device interconnect StreamExecutor with strength 1 edge matrix:
  55. 2021-11-27 23:43:01.484984: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1267] 0
  56. 2021-11-27 23:43:01.485152: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1280] 0: N
  57. 2021-11-27 23:43:01.485395: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1406] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6720 MB
  58. memory) -> physical GPU (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1)
  59. 2021-11-27 23:43:01.485565: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set
  60. 2021-11-27 23:43:01.518135: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:196] None of the MLIR optimization passes are enabled (registered 0 passes)
  61. Testing original iphone model, processing image 3.jpg
  62. 2021-11-27 23:43:01.863678: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudnn64_8.dll
  63. 2021-11-27 23:43:02.517063: I tensorflow/core/platform/windows/subprocess.cc:308] SubProcess ended with return code: 0
  64. 2021-11-27 23:43:02.632790: I tensorflow/core/platform/windows/subprocess.cc:308] SubProcess ended with return code: 0
  65. 2021-11-27 23:43:03.210892: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublas64_11.dll
  66. 2021-11-27 23:43:03.509052: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublasLt64_11.dll
  67. Lossy conversion from float32 to uint8. Range [-0.06221151351928711, 1.0705437660217285]. Convert image to uint8 prior to saving to suppress this warning.
  68. Lossy conversion from float32 to uint8. Range [-0.06221151351928711, 1.0705437660217285]. Convert image to uint8 prior to saving to suppress this warning.
  69. Testing original iphone model, processing image 4.jpg
  70. Lossy conversion from float32 to uint8. Range [-0.05176264047622681, 1.0500218868255615]. Convert image to uint8 prior to saving to suppress this warning.
  71. Lossy conversion from float32 to uint8. Range [-0.05176264047622681, 1.0500218868255615]. Convert image to uint8 prior to saving to suppress this warning.
  72. Testing original iphone model, processing image 5.jpg
  73. Lossy conversion from float32 to uint8. Range [-0.03344374895095825, 1.0417983531951904]. Convert image to uint8 prior to saving to suppress this warning.
  74. Lossy conversion from float32 to uint8. Range [-0.03344374895095825, 1.0417983531951904]. Convert image to uint8 prior to saving to suppress this warning.
  75. Testing original iphone model, processing image 6.jpg
  76. Lossy conversion from float32 to uint8. Range [-0.03614246845245361, 1.063475251197815]. Convert image to uint8 prior to saving to suppress this warning.
  77. Lossy conversion from float32 to uint8. Range [-0.03614246845245361, 1.063475251197815]. Convert image to uint8 prior to saving to suppress this warning.

项目会生成前后对比图以及最终结果图。

前后效果图,左边为原始图,右边为对比图。

 

结果图如下

 

可以明显的看出,新图已经明亮了许多,色彩也变的比较鲜明了,效果还是很不错的。

总结

项目整体没什么毛病,只是如果要单独处理一张图片还需要对项目魔改一下。我下一篇文章会稍微魔改一下,简化项目结构,处理单张图片。

分享:

        有花不语,凌风傲雪。有花不言,自开自凋零。有花幽幽,芳华尽蚀人间。——《虫师》

如果本文对你有用的话,给我点个赞吧,谢谢!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/268876
推荐阅读
相关标签
  

闽ICP备14008679号