当前位置:   article > 正文

无人机拦截与对抗

无人机拦截与对抗

配置yolo

1.框架
yolo框架使用darknet_ros,这个版本支持yolov3和yolov4的配置文件

2.报错
(1)CUDA报错

`nvcc fatal : Unsupported gpu architecture 'compute_30'.`
  • 1

(1)查看显卡匹配型号:https://blog.csdn.net/u013308762/article/details/121658823
(2)查看显卡:nvidia-smi -a
==》NVIDIA GeForce GTX 1070匹配ARCH= -gencode arch=compute_61,code=sm_61
因此,修改darknet_ros/CMakeLists.txt的文件,将多余compute版本注释掉

    ${CUDA_NVCC_FLAGS};
    -O3
    #-gencode arch=compute_30,code=sm_30
    #-gencode arch=compute_35,code=sm_35
    #-gencode arch=compute_50,code=[sm_50,compute_50]
    #-gencode arch=compute_52,code=[sm_52,compute_52]
    -gencode arch=compute_61,code=sm_61
    #-gencode arch=compute_62,code=sm_62
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

(2)OPENCV报错

/usr/local/include/opencv2/core/cvdef.h:485:1: error: unknown type name ‘namespace’
 namespace cv {
 ^~~~~~~~~
  • 1
  • 2
  • 3

修改如下https://zhuanlan.zhihu.com/p/36933700

3.配置文件
更改无人机模型和视觉输入
(1)修改task1.launch

  <arg name="image" default="/iris_0/stereo_camera/left/image_raw" />
  • 1

(2)修改uav0.yaml

  camera_reading:
    topic: /iris_0/stereo_camera/left/image_raw
  • 1
  • 2

运行

roslaunch px4 multi_vehicle.launch
  • 1
roslaunch darknet_ros task1.launch
  • 1
cd ~/XTDrone/communication
python multirotor_communication.py iris 0
  • 1
  • 2
cd ~/catkin_ws_intercept/src/intercept/scripts
python hover.py iris 1 vel
  • 1
  • 2
cd ~/catkin_ws_intercept/src/intercept/scripts
python yolo_human_intercept.py iris 0
  • 1
  • 2

yolo_human_intercept.py中采用视觉伺服控制,并使用pid方法控制速度

注意:做无人机速度控制时,摄像机方向(前方)为x轴正方向,左为y轴正方向

将yolo模型替换为无人机模型

无人机模型链接:https://github.com/chuanenlin/drone-net

下载其中yolo-drone.cfgyolo-drone.weights,并在task1.launch中替换路径

仿真中识别无人机效果不好,超过5m就识别不出来。
解决方法:1)增大仿真相机分辨率,2)需要使用labelme自己标注一些数据集重新训练

无人机群对抗策略

待调研

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/296744
推荐阅读
相关标签
  

闽ICP备14008679号