赞
踩
一、基本概念:
平衡二叉树:是一种特殊的二叉排序树,它或者为空树,或者每个结点的左右子树都是平衡二叉树,也就是每个结点的左右子树的高度之差只能是-1,0,1三种情况。
平衡二叉树又称AVL树,是由苏联的Georgy Adelson-Velsky和E.M.Landis发明的,并以他们的名字命名。与之类似的还有红黑树、B树等。
平衡二叉树的平衡状况由平衡因子(Balance Factor,BF)来衡量。平衡因子定义为当前结点的左子树高度减去右子树的高度之差,其可能取值只有-1,0,1。叶结点的BF都是0。如果能维持平衡二叉树的结构,检索操作就能在O(log n)时间内完成。
最小不平衡子树:距离插入结点最近的,且平衡因子的绝对值大于1的结点为根的子树。(不平衡即失衡,指BF超出合法值)
最小非平衡子树:包含插入结点位置,其根结点的BF是1或-1的最小子树。(非平衡指BF非0,但BF在合法值范围内)
(此处这两个概念如有错误,欢迎指正)
在下图中,原来结点4的BF=1,插入结点3后,结点4的BF=2。结点4是距离插入结点3最近的且BF绝对值大于1的结点,所以以结点4为根的子树就是最小不平衡子树。
二、插入操作的不同情况
1、如果在查找插入位置的过程中,所有途经结点的BF值均为0,那么插入新的结点后,不会导致这些途经结点失衡,只会让它们的BF值从0变为1或者-1。
如下图所示,插入结点3,查找时途经结点为5,4和2,其BF只是从原来的0都变为了1或-1,整棵树仍然是平衡的。
2、如下图,插入结点4.7。左图中最小非平衡子树以结点4为根结点a,结点4.7被插入到这棵子树较低的子树中,此时这棵子树还是平衡的,只需要修改这棵子树的从根结点直至插入结点路径上所有结点的BF值。
以上两种情况都不需要调整树的结构
3、需要调整树结构的情况又分为了四种情况:
(1)LL型调整:a的左子树较高,新结点插入在a的左子树的左子树。进行右旋转。
在下图的图a中,a是最小非平衡子树的根,b的BF一定是0(否则a就不是最小非平衡子树的根了)。结点2被插入到了a的左子树的左子树,需要进行LL型调整:将结点2-3-4-5-8看做一条可以转动的链子,将其向右旋转(顺时针)一个结点,然后将原来b结点的右子树,接到a结点的左子结点上,调整完成。
再说明一下插入结点的位置:插入结点不必像上图一样,必须插在某个结点的左子结点,也可以像下图一样,插在某个结点的右子结点,调整的方法还是一样的。这也是定义中说:新结点插入在a的左子树的‘左子树’,而不是左子树的左子结点的原因。
- @staticmethod
- def LL(a, b):
- a.left = b.right # 将b的右子树接到a的左子结点上
- b.right = a #将a树接到b的右子结点上
- a.bf = b.bf = 0 #调整a、b的bf值。
- return b
(2)RR型调整:a的右子树较高,新结点插入在a的右子树的右子树。进行左旋转。
RR型调整与LL型正好是对称的,操作步骤类似。在下图的图a中,a是最小非平衡子树的根,b的BF一定是0。结点9被插入到了a的右子树的右子树,需要进行RR型调整:同样地,将结点4-5-6-8-9看做一条可以转动的链子,将其向左旋转(逆时针)一个结点,然后将原来b结点的左子树,接到a结点的右子结点上,调整完成。
同样地,插入结点也可以插入在结点8的左子结点处,调整步骤是一样的。
- @staticmethod
- def RR(a, b):
- a.right = b.left
- b.left = a
- a.bf = b.bf = 0
- return b
(3)LR型调整:a的左子树较高,新结点插入在a的左子树的右子树。先进行左旋转,再进行右旋转。
在下图的图a中,a是最小非平衡子树的根,b的BF一定是0,c的BF也一定是0。结点4.1被插入到了a的左子树的右子树(图b中4.1插入到了c结点的左子树,当然也可以插到c结点的右子树,其调整过程都是一样的),需要进行LR型调整。
图c中,首先将c结点的左右子树分别摘下来,然后将结点4.5-4-3-2看做一条可以转动的链子,对其进行左旋转(逆时针)一个结点,就得到了图d,然后再将结点2-3-4-4.5-5-8-9看做一条转动的链子,将其进行右旋转(顺时针)一个结点,就得到了图e。
最后将原来c结点的左子树接到b结点的右子结点上,将原来c结点的右子树接到a结点的左子结点上,调整完成。
- @staticmethod
- def LR(a,b):
- c = b.right
- a.left, b.right = c.right, c.left
- c.left, c.right = b, a
- if c.bf == 0: #c本身就是插入点
- a.bf = b.bf = 0
- elif c.bf == 1: #插在c的左子树
- a.bf = -1
- b.bf = 0
- else: #插在c的右子树
- a.bf = 0
- b.bf = 1
- c.bf = 0
- return c
(4)RL型调整:a的右子树较高,新结点插入在a的右子树的左子树。先进行右旋转,再进行左旋转。
RL型调整与LR型正好是对称的,操作步骤类似。在下图的图a中,a是最小非平衡子树的根,b的BF一定是0,c的BF也一定是0。结点5.5被插入到了a的右子树的左子树(图b中5.5插入到了c结点的左子树,当然也可以插到c结点的右子树,其调整过程都是一样的),需要进行RL型调整。
图c中,首先将c结点的左右子树分别摘下来,然后将结点7-9-10-11看做一条可以转动的链子,对其进行右旋转(顺时针)一个结点,就得到了图d,然后再将结点3-4-5-7-9-10-11看做一条转动的链子,将其进行左旋转(逆时针)一个结点,就得到了图e。
最后将原来c结点的左子树接到a结点的右子结点上,将原来c结点的右子树接到b结点的左子结点上,调整完成。
- @staticmethod
- def RL(a, b):
- c = b.left
- a.right, b.left = c.left, c.right
- c.left, c.right = a, b
- if c.bf == 0:
- a.bf = b.bf = 0
- elif c.bf == 1:
- a.bf = 0
- b.bf = -1
- else:
- a.bf = 1
- b.bf = 0
- c.bf = 0
- return c
平衡二叉树的插入操作的复杂度是O(log n)
最后:用平衡二叉树来实现一个字典类
首先,AVL树结点类需要增加一个bf域。
- class AVLNode(BinTNode):
- def __init__(self, data):
- BinTNode.___init__(self,data)
- self.bf = 0
其次,AVL数是一种二叉排序树,所以可以直接继承二叉排序树的方法。
- class DictAVL(DictBinTree):
- def __init__(self, data):
- DictBinTree.___init__(self)
插入操作的实现:
- def insert(self, key, value):
- a = p = self.root
- if a is None: #如果根结点为空,则直接将值插入到根结点
- self.root = AVLNode(Assoc(key, value))
- return
- a_father, p_father = None #a_father用于最后将调整后的子树接到其子结点上
- while p is not None: #通过不断的循环,将p下移,查找插入位置,和最小非平衡子树
- if key == p.data.key: #如果key已经存在,则直接修改其关联值
- p.data.value = value
- return
- if p.bf != 0: #如果当前p结点的BF=0,则有可能是最小非平衡子树的根结点
- a_father, a, = p_father, p
- p_father = p
- if key < p.data.key:
- p = p.left
- else:
- p = p.right
-
- #上述循环结束后,p_father已经是插入点的父结点,a_father和a记录着最小非平衡子树
- node = AVLNode(Assoc(key, value))
- if key < p_father.data.key:
- p_father.left = node
- else:
- p_father.right = node
-
- #新结点已插入,a是最小非平衡子树的根结点
- if key < a.data.key: #新结点在a的左子树
- p = b = a.left
- d = 1 #d记录新结点被 插入到a的哪棵子树
- else:
- p = b = a.right #新结点在a的右子树
- d = -1
-
- #在新结点插入后,修改b到新结点路径上各结点的BF值。调整过程的BF值修改都在子函数中操作
- while p != node:
- if key < p.data.key:
- p.bf = 1
- p = p.left
- else:
- p.bf = -1
- p = p.right
- if a.bf == 0: #如果a的BF原来为0,那么插入新结点后不会失衡
- a.bf = d
- return
- if a.bf == -d: #如果新结点插入在a较低的子树里
- a.bf = 0
- return
-
- #以上两条if语句都不符合的话,说明新结点被插入在较高的子树里,需要进行调整
- if d == 1: #如果新结点插入在a的左子树
- if b.bf == 1: #b的BF原来为0,如果等于1,说明新结点插入在b的左子树
- b = DictAVL.LL(a, b)
- else: #新结点插入在b的右子树
- b = DictAVL.LR(a, b)
- else: #新结点插入在a的右子树
- if b.bf == -1: #新结点插入在b的右子树
- b = DictAVL.RR(a, b)
- else: ##新结点插入在b的左子树
- b = DictAVL.RL(a, b)
-
- #将调整后的最小非平衡子树接到原树中,也就是接到原来a结点的父结点上
- if a_father is None: #判断a是否是根结点
- self.root = b
- else:
- if a_father == a:
- a_father.left = b
- else:
- a_father.right = b
完整的代码如下:
- class StackUnderflow(ValueError):
- pass
-
- class SStack():
- def __init__(self):
- self.elems = []
-
- def is_empty(self):
- return self.elems == []
-
- def top(self): #取得栈里最后压入的元素,但不删除
- if self.elems == []:
- raise StackUnderflow('in SStack.top()')
- return self.elems[-1]
-
- def push(self, elem):
- self.elems.append(elem)
-
- def pop(self):
- if self.elems == []:
- raise StackUnderflow('in SStack.pop()')
- return self.elems.pop()
-
- class Assoc: #定义一个关联类
- def __init__(self, key, value):
- self.key = key #键(关键码)
- self.value = value #值
-
- def __lt__(self, other):#Python解释器中遇到比较运算符<,会去找类里定义的__lt__方法(less than)
- return self.key < other.key
-
- def __le__(self, other): #(less than or equal to)
- return self.key < other.key or self.key == other.key
-
- def __str__(self):
- return 'Assoc({0},{1})'.format(self.key, self.value) #key和value分别替换前面{0},{1}的位置。
-
- class BinTNode:
- def __init__(self, dat, left = None, right = None):
- self.data = dat
- self.left = left
- self.right = right
-
- class DictBinTree:
- def __init__(self, root = None):
- self.root = root
-
- def is_empty(self):
- return self.root is None
-
- def search(self, key):#检索是否存在关键码key
- bt = self.root
- while bt is not None:
- entry = bt.data
- if key < entry.key:
- bt = bt.left
- elif key > entry.key:
- bt = bt.right
- else:
- return entry.value
- return None
-
- def insert(self, key, value):
- bt = self.root
- if bt is None:
- self.root = BinTNode(Assoc(key, value))
- return
- while True:
- entry = bt.data
- if key < entry.key: #如果小于当前关键码,转向左子树
- if bt.left is None: #如果左子树为空,就直接将数据插在这里
- bt.left = BinTNode(Assoc(key,value))
- return
- bt = bt.left
- elif key > entry.key:
- if bt.right is None:
- bt.right = BinTNode(Assoc(key,value))
- return
- bt = bt.right
- else:
- bt.data.value = value
- return
- def print_all_values(self):
- bt, s = self.root, SStack()
- while bt is not None or not s.is_empty(): #最开始时栈为空,但bt不为空;bt = bt.right可能为空,栈不为空;当两者都为空时,说明已经全部遍历完成了
- while bt is not None:
- s.push(bt)
- bt = bt.left
- bt = s.pop() #将栈顶元素弹出
- yield bt.data.key, bt.data.value
- bt = bt.right #将当前结点的右子结点赋给bt,让其在while中继续压入栈内
-
- def entries(self):
- bt, s = self.root, SStack()
- while bt is not None or not s.is_empty():
- while bt is not None:
- s.push(bt)
- bt = bt.left
- bt = s.pop()
- yield bt.data.key, bt.data.value
- bt = bt.right
-
- def print_key_value(self):
- for k, v in self.entries():
- print(k, v)
-
- def delete(self, key):
- #以下这一段用于找到待删除结点及其父结点的位置。
- del_position_father, del_position = None, self.root #del_position_father是待删除结点del_position的父结点
- while del_position is not None and del_position.data.key != key: #通过不断的比较,找到待删除结点的位置
- del_position_father = del_position
- if key < del_position.data.key:
- del_position = del_position.left
- else:
- del_position = del_position.right
- if del_position is None:
- print('There is no key')
- return
-
- if del_position.left is None: #如果待删除结点只有右子树
- if del_position_father is None: #如果待删除结点的父结点是空,则说明待删除结点是根结点
- self.root = del_position.right #则直接将根结点置空
- elif del_position is del_position_father.left: #如果待删除结点是其父结点的左结点
- del_position_father.left = del_position.right #***改变待删除结点父结点的左子树的指向
- else:
- del_position_father.right = del_position.right
- return
-
- #如果既有左子树又有右子树,或者仅有左子树时,都可以用直接前驱替换的删除结点的方式,只不过得到的二叉树与原理中说明的不一样,但是都满足要求。
- pre_node_father, pre_node = del_position, del_position.left
- while pre_node.right is not None: #找到待删除结点的左子树的最右结点,即为待删除结点的直接前驱
- pre_node_father = pre_node
- pre_node = pre_node.right
- del_position.data = pre_node.data #将前驱结点的data赋给删除结点即可,不需要改变其原来的连接方式
-
- if pre_node_father.left is pre_node:
- pre_node_father.left = pre_node.left
- if pre_node_father.right is pre_node:
- pre_node_father.right = pre_node.left
-
-
- def build_dictBinTree(entries):
- dic = DictBinTree()
- for k,v in entries:
- dic.insert(k,v)
- return dic
-
-
- class AVLNode(BinTNode):
- def __init__(self, data):
- BinTNode.___init__(self,data)
- self.bf = 0
-
- class DictAVL(DictBinTree):
- def __init__(self, data):
- DictBinTree.___init__(self)
-
- @staticmethod
- def LL(a, b):
- a.left = b.right # 将b的右子树接到a的左子结点上
- b.right = a #将a树接到b的右子结点上
- a.bf = b.bf = 0 #调整a、b的bf值。
- return b
-
- @staticmethod
- def RR(a, b):
- a.right = b.left
- b.left = a
- a.bf = b.bf = 0
- return b
-
- @staticmethod
- def LR(a,b):
- c = b.right
- a.left, b.right = c.right, c.left
- c.left, c.right = b, a
- if c.bf == 0: #c本身就是插入点
- a.bf = b.bf = 0
- elif c.bf == 1: #插在c的左子树
- a.bf = -1
- b.bf = 0
- else: #插在c的右子树
- a.bf = 0
- b.bf = 1
- c.bf = 0
- return c
-
- @staticmethod
- def RL(a, b):
- c = b.left
- a.right, b.left = c.left, c.right
- c.left, c.right = a, b
- if c.bf == 0:
- a.bf = b.bf = 0
- elif c.bf == 1:
- a.bf = 0
- b.bf = -1
- else:
- a.bf = 1
- b.bf = 0
- c.bf = 0
- return c
-
- def insert(self, key, value):
- a = p = self.root
- if a is None: #如果根结点为空,则直接将值插入到根结点
- self.root = AVLNode(Assoc(key, value))
- return
- a_father, p_father = None #a_father用于最后将调整后的子树接到其子结点上
- while p is not None: #通过不断的循环,将p下移,查找插入位置,和最小非平衡子树
- if key == p.data.key: #如果key已经存在,则直接修改其关联值
- p.data.value = value
- return
- if p.bf != 0: #如果当前p结点的BF=0,则有可能是最小非平衡子树的根结点
- a_father, a, = p_father, p
- p_father = p
- if key < p.data.key:
- p = p.left
- else:
- p = p.right
-
- #上述循环结束后,p_father已经是插入点的父结点,a_father和a记录着最小非平衡子树
- node = AVLNode(Assoc(key, value))
- if key < p_father.data.key:
- p_father.left = node
- else:
- p_father.right = node
-
- #新结点已插入,a是最小非平衡子树的根结点
- if key < a.data.key: #新结点在a的左子树
- p = b = a.left
- d = 1 #d记录新结点被 插入到a的哪棵子树
- else:
- p = b = a.right #新结点在a的右子树
- d = -1
-
- #在新结点插入后,修改b到新结点路径上各结点的BF值。调整过程的BF值修改都在子函数中操作
- while p != node:
- if key < p.data.key:
- p.bf = 1
- p = p.left
- else:
- p.bf = -1
- p = p.right
- if a.bf == 0: #如果a的BF原来为0,那么插入新结点后不会失衡
- a.bf = d
- return
- if a.bf == -d: #如果新结点插入在a较低的子树里
- a.bf = 0
- return
-
- #以上两条if语句都不符合的话,说明新结点被插入在较高的子树里,需要进行调整
- if d == 1: #如果新结点插入在a的左子树
- if b.bf == 1: #b的BF原来为0,如果等于1,说明新结点插入在b的左子树
- b = DictAVL.LL(a, b)
- else: #新结点插入在b的右子树
- b = DictAVL.LR(a, b)
- else: #新结点插入在a的右子树
- if b.bf == -1: #新结点插入在b的右子树
- b = DictAVL.RR(a, b)
- else: ##新结点插入在b的左子树
- b = DictAVL.RL(a, b)
-
- #将调整后的最小非平衡子树接到原树中,也就是接到原来a结点的父结点上
- if a_father is None: #判断a是否是根结点
- self.root = b
- else:
- if a_father == a:
- a_father.left = b
- else:
- a_father.right = b
- if __name__=="__main__":
- #LL调整
- entries = [(5,'a'),(2.5,'g'),(2.3,'h'),(3,'b'),(2,'d'),(4,'e'),(3.5,'f')]
- dic = build_dictBinTree(entries)
- dic.print_key_value()
- print('after inserting')
- dic.insert(1, 'i')
- dic.print_key_value()
-
- #LR调整
- entries = [(2.5,'g'),(3,'b'),(4,'e'),(3.5,'f')]
- dic = build_dictBinTree(entries)
- dic.print_key_value()
- print('after inserting')
- dic.insert(3.2, 'i') #LL
- dic.print_key_value()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。