赞
踩
- #!/user/bin/env python3
- # -*- coding: utf-8 -*-
- # coding=utf-8
- # Copyright 2021 The Eleuther AI and HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """ PyTorch GPT Neo model."""
-
-
- import os
- from typing import Optional, Tuple, Union
-
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
-
- from transformers.activations import ACT2FN
- from transformers.modeling_outputs import (
- BaseModelOutputWithPast,
- BaseModelOutputWithPastAndCrossAttentions,
- CausalLMOutputWithCrossAttentions,
- CausalLMOutputWithPast,
- QuestionAnsweringModelOutput,
- SequenceClassifierOutputWithPast,
- TokenClassifierOutput,
- )
- from transformers.modeling_utils import PreTrainedModel
- from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
- from transformers.models.gpt_neo.configuration_gpt_neo import GPTNeoConfig
-
- logger = logging.get_logger(__name__)
-
- _CONFIG_FOR_DOC = "GPTNeoConfig"
-
- GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST = [
- "EleutherAI/gpt-neo-1.3B",
- # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
- ]
-
- _CHECKPOINT_FOR_DOC = "EleutherAI/gpt-neo-1.3B"
-
-
- def load_tf_weights_in_gpt_neo(model, config, gpt_neo_checkpoint_path):
- """Load tf checkpoints in a pytorch model"""
- try:
- import re
-
- import tensorflow as tf
- except ImportError:
- logger.error(
- "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
- "https://www.tensorflow.org/install/ for installation instructions."
- )
- raise
- tf_path = os.path.abspath(gpt_neo_checkpoint_path)
- logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
- # Load weights from TF model
- init_vars = tf.train.list_variables(tf_path)
- names = []
- arrays = []
- for name, shape in init_vars:
- if "global_step" not in name and "adam" not in name:
- array = tf.train.load_variable(tf_path, name)
- array = tf.dtypes.cast(array.squeeze(), tf.float32).numpy()
- name = name.replace("attn/q", "attn/attention/q_proj/w")
- name = name.replace("attn/k", "attn/attention/k_proj/w")
- name = name.replace("attn/v", "attn/attention/v_proj/w")
- name = name.replace("attn/o", "attn/attention/out_proj/w")
- name = name.replace("norm_1", "ln_1")
- name = name.replace("norm_2", "ln_2")
- name = name.replace("attn/compute_output_bias/o_b", "attn/attention/out_proj/b")
- name = name.replace("conv1d_main/c_fc/kernel", "c_fc/w")
- name = name.replace("conv1d_main/c_fc/bias", "c_fc/b")
- name = name.replace("conv1d_main/c_proj/kernel", "c_proj/w")
- name = name.replace("conv1d_main/c_proj/bias", "c_proj/b")
-
- names.append(name)
- arrays.append(array)
-
- for name, array in zip(names, arrays):
- name = name[5:] # skip "gpt2/"
- name = name.split("/")
- pointer = model.transformer
- for m_name in name:
- if re.fullmatch(r"[A-Za-z]+\d+", m_name):
- scope_names = re.split(r"(\d+)", m_name)
- else:
- scope_names = [m_name]
- if scope_names[0] == "w" or scope_names[0] == "g":
- pointer = getattr(pointer, "weight")
- elif scope_names[0] == "b":
- pointer = getattr(pointer, "bias")
- elif scope_names[0] == "wpe" or scope_names[0] == "wte":
- pointer = getattr(pointer, scope_names[0])
- pointer = getattr(pointer, "weight")
- else:
- pointer = getattr(pointer, scope_names[0])
- if len(scope_names) >= 2:
- num = int(scope_names[1])
- pointer = pointer[num]
-
- if name[-1] == "w" and name[-2] in ["out_proj", "k_proj", "q_proj", "v_proj", "c_proj", "c_fc"]:
- array = array.transpose()
-
- if name == ["wte"]:
- # if vocab is padded, then trim off the padding embeddings
- array = array[: config.vocab_size]
-
- if pointer.shape != array.shape:
- raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched {name}")
-
- print(f"Initialize PyTorch weight {name}")
- pointer.data = torch.from_numpy(array)
-
- # init the final linear layer using word embeddings
- embs = model.transformer.wte.weight
- lin = nn.Linear(embs.size()[1], embs.size()[0], bias=False)
- lin.weight = embs
- model.set_output_embeddings(lin)
- return model
-
-
- class GPTNeoSelfAttention(nn.Module):
- def __init__(self, config, attention_type):
- super().__init__()
-
- max_positions = config.max_position_embeddings
- bias = torch.tril(torch.ones((max_positions, max_positions), dtype=bool)).view(
- 1, 1, max_positions, max_positions
- )
-
- # local causal self attention is a sliding window where each token can only attend to the previous
- # window_size tokens. This is implemented by updating the causal mask such that for each token
- # all other tokens are masked except the previous window_size tokens.
- if attention_type == "local":
- bias = torch.bitwise_xor(bias, torch.tril(bias, -config.window_size))
-
- self.register_buffer("bias", bias)
- self.register_buffer("masked_bias", torch.tensor(-1e9))
-
- self.attn_dropout = nn.Dropout(float(config.attention_dropout))
- self.resid_dropout = nn.Dropout(float(config.resid_dropout))
-
- self.embed_dim = config.hidden_size
- self.num_heads = config.num_heads
- self.head_dim = self.embed_dim // self.num_heads
- if self.head_dim * self.num_heads != self.embed_dim:
- raise ValueError(
- f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
- f" {self.num_heads})."
- )
-
- self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
- self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
- self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
- self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
-
- def _split_heads(self, tensor, num_heads, attn_head_size):
- """
- Splits hidden_size dim into attn_head_size and num_heads
- """
- new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
- tensor = tensor.view(new_shape)
- return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
-
- def _merge_heads(self, tensor, num_heads, attn_head_size):
- """
- Merges attn_head_size dim and num_attn_heads dim into hidden_size
- """
- tensor = tensor.permute(0, 2, 1, 3).contiguous()
- new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
- return tensor.view(new_shape)
-
- def _attn(self, query, key, value, attention_mask=None, head_mask=None):
- # Keep the attention weights computation in fp32 to avoid overflow issues
- query = query.to(torch.float32)
- key = key.to(torch.float32)
-
- attn_weights = torch.matmul(query, key.transpose(-1, -2))
-
- query_length, key_length = query.size(-2), key.size(-2)
- causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
- mask_value = torch.finfo(attn_weights.dtype).min
- # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
- # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
- mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
- attn_weights = torch.where(causal_mask, attn_weights, mask_value)
-
- if attention_mask is not None:
- # Apply the attention mask
- attn_weights = attn_weights + attention_mask
-
- attn_weights = nn.functional.softmax(attn_weights, dim=-1)
- attn_weights = attn_weights.to(value.dtype)
- attn_weights = self.attn_dropout(attn_weights)
-
- # Mask heads if we want to
- if head_mask is not None:
- attn_weights = attn_weights * head_mask
-
- attn_output = torch.matmul(attn_weights, value)
-
- return attn_output, attn_weights
-
- def forward(
- self,
- hidden_states,
- attention_mask=None,
- layer_past=None,
- head_mask=None,
- use_cache=False,
- output_attentions=False,
- ):
- query = self.q_proj(hidden_states)
- key = self.k_proj(hidden_states)
- value = self.v_proj(hidden_states)
-
- query = self._split_heads(query, self.num_heads, self.head_dim)
- key = self._split_heads(key, self.num_heads, self.head_dim)
- value = self._split_heads(value, self.num_heads, self.head_dim)
-
- if layer_past is not None:
- past_key = layer_past[0]
- past_value = layer_past[1]
- key = torch.cat((past_key, key), dim=-2)
- value = torch.cat((past_value, value), dim=-2)
-
- if use_cache is True:
- present = (key, value)
- else:
- present = None
-
- attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
-
- attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
- attn_output = self.out_proj(attn_output)
- attn_output = self.resid_dropout(attn_output)
-
- outputs = (attn_output, present)
- if output_attentions:
- outputs += (attn_weights,)
-
- return outputs # a, present, (attentions)
-
-
- class GPTNeoAttention(nn.Module):
- def __init__(self, config, layer_id=0):
- super().__init__()
- self.layer_id = layer_id
- self.attention_layers = config.attention_layers
- self.attention_type = self.attention_layers[layer_id]
-
- if self.attention_type in ["global", "local"]:
- self.attention = GPTNeoSelfAttention(config, self.attention_type)
- else:
- raise NotImplementedError(
- "Only attn layer types 'global' and 'local' exist, but got `config.attention_layers`: "
- f"{config.attention_layers}. Select attn layer types from ['global', 'local'] only."
- )
-
- def forward(
- self,
- hidden_states,
- layer_past=None,
- attention_mask=None,
- head_mask=None,
- use_cache=False,
- output_attentions=False,
- ):
- return self.attention(
- hidden_states,
- attention_mask=attention_mask,
- layer_past=layer_past,
- head_mask=head_mask,
- use_cache=use_cache,
- output_attentions=output_attentions,
- )
-
-
- class GPTNeoMLP(nn.Module):
- def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * hidden_size
- super().__init__()
- embed_dim = config.hidden_size
- self.c_fc = nn.Linear(embed_dim, intermediate_size)
- self.c_proj = nn.Linear(intermediate_size, embed_dim)
- self.act = ACT2FN[config.activation_function]
- self.dropout = nn.Dropout(float(config.resid_dropout))
-
- def forward(self, hidden_states):
- hidden_states = self.c_fc(hidden_states)
- hidden_states = self.act(hidden_states)
- hidden_states = self.c_proj(hidden_states)
- hidden_states = self.dropout(hidden_states)
- return hidden_states
-
-
- class GPTNeoBlock(nn.Module):
- def __init__(self, config, layer_id):
- super().__init__()
- hidden_size = config.hidden_size
- inner_dim = config.intermediate_size if config.intermediate_size is not None else 4 * hidden_size
- self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
- self.attn = GPTNeoAttention(config, layer_id)
- self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
- self.mlp = GPTNeoMLP(inner_dim, config)
-
- def forward(
- self,
- hidden_states,
- layer_past=None,
- attention_mask=None,
- head_mask=None,
- use_cache=False,
- output_attentions=False,
- ):
- residual = hidden_states
- hidden_states = self.ln_1(hidden_states)
- attn_outputs = self.attn(
- hidden_states,
- layer_past=layer_past,
- attention_mask=attention_mask,
- head_mask=head_mask,
- use_cache=use_cache,
- output_attentions=output_attentions,
- )
- attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
- outputs = attn_outputs[1:]
- # residual connection
- hidden_states = attn_output + residual
-
- residual = hidden_states
- hidden_states = self.ln_2(hidden_states)
- feed_forward_hidden_states = self.mlp(hidden_states)
- # residual connection
- hidden_states = residual + feed_forward_hidden_states
-
- if use_cache:
- outputs = (hidden_states,) + outputs
- else:
- outputs = (hidden_states,) + outputs[1:]
-
- return outputs # hidden_states, present, (attentions, cross_attentions)
-
-
- class GPTNeoPreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
-
- config_class = GPTNeoConfig
- load_tf_weights = load_tf_weights_in_gpt_neo
- base_model_prefix = "transformer"
- supports_gradient_checkpointing = True
- _no_split_modules = ["GPTNeoBlock"]
-
- def __init__(self, *inputs, **kwargs):
- super().__init__(*inputs, **kwargs)
-
- def _init_weights(self, module):
- """Initialize the weights."""
- if isinstance(module, (nn.Linear,)):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- elif isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
-
- def _set_gradient_checkpointing(self, module, value=False):
- if isinstance(module, GPTNeoModel):
- module.gradient_checkpointing = value
-
-
- GPT_NEO_START_DOCSTRING = r"""
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
- etc.)
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
- and behavior.
- Parameters:
- config ([`GPTNeoConfig`]): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
- """
-
- GPT_NEO_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
- `input_ids_length` = `sequence_length` if `past_key_values` is `None` else
- `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
- sequence tokens in the vocabulary.
- If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
- `input_ids`.
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
- [`PreTrainedTokenizer.__call__`] for details.
- [What are input IDs?](../glossary#input-ids)
- past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.num_layers`):
- Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
- `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
- their past given to this model should not be passed as `input_ids` as they have already been computed.
- attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
- [What are attention masks?](../glossary#attention-mask)
- token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
- Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
- 1]`:
- - 0 corresponds to a *sentence A* token,
- - 1 corresponds to a *sentence B* token.
- [What are token type IDs?](../glossary#token-type-ids)
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
- config.max_position_embeddings - 1]`.
- [What are position IDs?](../glossary#position-ids)
- head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
- model's internal embedding lookup matrix.
- If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
- `past_key_values`).
- use_cache (`bool`, *optional*):
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
- `past_key_values`).
- output_attentions (`bool`, *optional*):
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
- tensors for more detail.
- output_hidden_states (`bool`, *optional*):
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
- more detail.
- return_dict (`bool`, *optional*):
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
- """
-
-
- @add_start_docstrings(
- "The bare GPT Neo Model transformer outputting raw hidden-states without any specific head on top.",
- GPT_NEO_START_DOCSTRING,
- )
- class GPTNeoModel(GPTNeoPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
-
- self.embed_dim = config.hidden_size
- self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
- self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
- self.drop = nn.Dropout(float(config.embed_dropout))
- self.h = nn.ModuleList([GPTNeoBlock(config, layer_id=i) for i in range(config.num_layers)])
- self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
-
- self.gradient_checkpointing = False
- # Initialize weights and apply final processing
- self.post_init()
-
- def get_input_embeddings(self):
- return self.wte
-
- def set_input_embeddings(self, new_embeddings):
- self.wte = new_embeddings
-
- @add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=BaseModelOutputWithPastAndCrossAttentions,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- input_shape = input_ids.size()
- input_ids = input_ids.view(-1, input_shape[-1])
- batch_size = input_ids.shape[0]
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- batch_size = inputs_embeds.shape[0]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
-
- device = input_ids.device if input_ids is not None else inputs_embeds.device
-
- if token_type_ids is not None:
- token_type_ids = token_type_ids.view(-1, input_shape[-1])
- if position_ids is not None:
- position_ids = position_ids.view(-1, input_shape[-1])
-
- if past_key_values is None:
- past_length = 0
- past_key_values = tuple([None] * len(self.h))
- else:
- past_length = past_key_values[0][0].size(-2)
-
- if position_ids is None:
- position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
- position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
-
- # Attention mask.
- if attention_mask is not None:
- if batch_size <= 0:
- raise ValueError("batch_size has to be defined and > 0")
- attention_mask = attention_mask.view(batch_size, -1)
- # We create a 3D attention mask from a 2D tensor mask.
- # Sizes are [batch_size, 1, 1, to_seq_length]
- # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
- # this attention mask is more simple than the triangular masking of causal attention
- # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
- attention_mask = attention_mask[:, None, None, :]
-
- # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
- # masked positions, this operation will create a tensor which is 0.0 for
- # positions we want to attend and the dtype's smallest value for masked positions.
- # Since we are adding it to the raw scores before the softmax, this is
- # effectively the same as removing these entirely.
- attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
- attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
-
- # Prepare head mask if needed
- # 1.0 in head_mask indicate we keep the head
- # attention_probs has shape bsz x num_heads x N x N
- # head_mask has shape n_layer x batch x num_heads x N x N
- head_mask = self.get_head_mask(head_mask, self.config.num_layers)
-
- if inputs_embeds is None:
- inputs_embeds = self.wte(input_ids)
- position_embeds = self.wpe(position_ids)
- hidden_states = inputs_embeds + position_embeds
-
- if token_type_ids is not None:
- token_type_embeds = self.wte(token_type_ids)
- hidden_states = hidden_states + token_type_embeds
-
- hidden_states = self.drop(hidden_states)
-
- output_shape = input_shape + (hidden_states.size(-1),)
-
- if self.gradient_checkpointing and self.training:
- if use_cache:
- logger.warning_once(
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
- )
- use_cache = False
-
- presents = () if use_cache else None
- all_self_attentions = () if output_attentions else None
- all_hidden_states = () if output_hidden_states else None
- for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
-
- if self.gradient_checkpointing and self.training:
-
- def create_custom_forward(module):
- def custom_forward(*inputs):
- # None for past_key_value
- return module(*inputs, use_cache, output_attentions)
-
- return custom_forward
-
- outputs = torch.utils.checkpoint.checkpoint(
- create_custom_forward(block),
- hidden_states,
- None,
- attention_mask,
- head_mask[i],
- )
- else:
- outputs = block(
- hidden_states,
- layer_past=layer_past,
- attention_mask=attention_mask,
- head_mask=head_mask[i],
- use_cache=use_cache,
- output_attentions=output_attentions,
- )
-
- hidden_states = outputs[0]
- if use_cache is True:
- presents = presents + (outputs[1],)
-
- if output_attentions:
- all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
-
- hidden_states = self.ln_f(hidden_states)
-
- hidden_states = hidden_states.view(output_shape)
- # Add last hidden state
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
-
- if not return_dict:
- return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
-
- return BaseModelOutputWithPast(
- last_hidden_state=hidden_states,
- past_key_values=presents,
- hidden_states=all_hidden_states,
- attentions=all_self_attentions,
- )
-
-
- @add_start_docstrings(
- """
- The GPT Neo Model transformer with a language modeling head on top (linear layer with weights tied to the input
- embeddings).
- """,
- GPT_NEO_START_DOCSTRING,
- )
- class GPTNeoForCausalLM(GPTNeoPreTrainedModel):
- _keys_to_ignore_on_load_missing = [
- r"h\.\d+\.attn\.masked_bias",
- r"lm_head.weight",
- r"h\.\d+\.attn\.attention\.bias",
- ]
- _keys_to_ignore_on_save = [r"lm_head.weight"]
-
- def __init__(self, config):
- super().__init__(config)
- self.transformer = GPTNeoModel(config)
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
-
- # Initialize weights and apply final processing
- self.post_init()
-
- def get_output_embeddings(self):
- return self.lm_head
-
- def set_output_embeddings(self, new_embeddings):
- self.lm_head = new_embeddings
-
- def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
- token_type_ids = kwargs.get("token_type_ids", None)
- # only last token for inputs_ids if past is defined in kwargs
- if past_key_values:
- input_ids = input_ids[:, -1].unsqueeze(-1)
- if token_type_ids is not None:
- token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
-
- attention_mask = kwargs.get("attention_mask", None)
- position_ids = kwargs.get("position_ids", None)
-
- if attention_mask is not None and position_ids is None:
- # create position_ids on the fly for batch generation
- position_ids = attention_mask.long().cumsum(-1) - 1
- position_ids.masked_fill_(attention_mask == 0, 1)
- if past_key_values:
- position_ids = position_ids[:, -1].unsqueeze(-1)
- else:
- position_ids = None
- return {
- "input_ids": input_ids,
- "past_key_values": past_key_values,
- "use_cache": kwargs.get("use_cache"),
- "position_ids": position_ids,
- "attention_mask": attention_mask,
- "token_type_ids": token_type_ids,
- }
-
- @add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=CausalLMOutputWithCrossAttentions,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
- `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
- are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-
- transformer_outputs = self.transformer(
- input_ids,
- past_key_values=past_key_values,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- hidden_states = transformer_outputs[0]
-
- lm_logits = self.lm_head(hidden_states)
-
- loss = None
- if labels is not None:
- # move labels to correct device to enable model parallelism
- labels = labels.to(lm_logits.device)
- # Compute loss in fp32 to match with mesh-tf version
- # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
- lm_logits = lm_logits.to(torch.float32)
-
- # Shift so that tokens < n predict n
- shift_logits = lm_logits[..., :-1, :].contiguous()
- shift_labels = labels[..., 1:].contiguous()
- # Flatten the tokens
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
-
- lm_logits = lm_logits.to(hidden_states.dtype)
- loss = loss.to(hidden_states.dtype)
-
- if not return_dict:
- output = (lm_logits,) + transformer_outputs[1:]
- return ((loss,) + output) if loss is not None else output
-
- return CausalLMOutputWithPast(
- loss=loss,
- logits=lm_logits,
- past_key_values=transformer_outputs.past_key_values,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- )
-
- @staticmethod
- def _reorder_cache(
- past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
- ) -> Tuple[Tuple[torch.Tensor]]:
- """
- This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
- [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
- beam_idx at every generation step.
- """
- return tuple(
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
- for layer_past in past_key_values
- )
-
-
- @add_start_docstrings(
- """
- The GPTNeo Model transformer with a sequence classification head on top (linear layer).
- [`GPTNeoForSequenceClassification`] uses the last token in order to do the classification, as other causal models
- (e.g. GPT-1) do.
- Since it does classification on the last token, it requires to know the position of the last token. If a
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
- each row of the batch).
- """,
- GPT_NEO_START_DOCSTRING,
- )
- class GPTNeoForSequenceClassification(GPTNeoPreTrainedModel):
- _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head.weight"]
-
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.transformer = GPTNeoModel(config)
- self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
-
- # Initialize weights and apply final processing
- self.post_init()
-
- @add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=SequenceClassifierOutputWithPast,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-
- transformer_outputs = self.transformer(
- input_ids,
- past_key_values=past_key_values,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- hidden_states = transformer_outputs[0]
- logits = self.score(hidden_states)
-
- if input_ids is not None:
- batch_size, sequence_length = input_ids.shape[:2]
- else:
- batch_size, sequence_length = inputs_embeds.shape[:2]
-
- if self.config.pad_token_id is None and batch_size != 1:
- raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
- if self.config.pad_token_id is None:
- sequence_lengths = -1
- else:
- if input_ids is not None:
- sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
- else:
- sequence_lengths = -1
- logger.warning(
- f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
- "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
- )
-
- pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
-
- loss = None
- if labels is not None:
- if self.config.problem_type is None:
- if self.num_labels == 1:
- self.config.problem_type = "regression"
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
- self.config.problem_type = "single_label_classification"
- else:
- self.config.problem_type = "multi_label_classification"
-
- if self.config.problem_type == "regression":
- loss_fct = MSELoss()
- if self.num_labels == 1:
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
- else:
- loss = loss_fct(pooled_logits, labels)
- elif self.config.problem_type == "single_label_classification":
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
- elif self.config.problem_type == "multi_label_classification":
- loss_fct = BCEWithLogitsLoss()
- loss = loss_fct(pooled_logits, labels)
- if not return_dict:
- output = (pooled_logits,) + transformer_outputs[1:]
- return ((loss,) + output) if loss is not None else output
-
- return SequenceClassifierOutputWithPast(
- loss=loss,
- logits=pooled_logits,
- past_key_values=transformer_outputs.past_key_values,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- )
-
-
- @add_start_docstrings(
- """
- GPT Neo model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
- Named-Entity-Recognition (NER) tasks.
- """,
- GPT_NEO_START_DOCSTRING,
- )
- class GPTNeoForTokenClassification(GPTNeoPreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
-
- self.transformer = GPTNeoModel(config)
- self.dropout = nn.Dropout(config.classifier_dropout)
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
-
- # Initialize weights and apply final processing
- self.post_init()
-
- @add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- checkpoint="EleutherAI/gpt-neo-125m",
- output_type=TokenClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- expected_loss=0.25,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- labels: Optional[torch.LongTensor] = None,
- use_cache: Optional[bool] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, TokenClassifierOutput]:
- r"""
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-
- transformer_outputs = self.transformer(
- input_ids,
- past_key_values=past_key_values,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
-
- hidden_states = transformer_outputs[0]
- hidden_states = self.dropout(hidden_states)
- logits = self.classifier(hidden_states)
-
- loss = None
- if labels is not None:
- labels = labels.to(logits.device)
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
-
- if not return_dict:
- output = (logits,) + transformer_outputs[2:]
- return ((loss,) + output) if loss is not None else output
-
- return TokenClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- )
-
-
- @add_start_docstrings(
- """
- The GPT-Neo Model transformer with a span classification head on top for extractive question-answering tasks like
- SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
- """,
- GPT_NEO_START_DOCSTRING,
- )
- class GPTNeoForQuestionAnswering(GPTNeoPreTrainedModel):
- _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"h\.\d+\.attn\.bias", r"lm_head.weight"]
-
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.transformer = GPTNeoModel(config)
- self.qa_outputs = nn.Linear(config.hidden_size, 2)
-
- # Initialize weights and apply final processing
- self.post_init()
-
- @add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
- @add_code_sample_docstrings(
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=QuestionAnsweringModelOutput,
- config_class=_CONFIG_FOR_DOC,
- real_checkpoint=_CHECKPOINT_FOR_DOC,
- )
- def forward(
- self,
- input_ids: Optional[torch.LongTensor] = None,
- attention_mask: Optional[torch.FloatTensor] = None,
- token_type_ids: Optional[torch.LongTensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- head_mask: Optional[torch.FloatTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- start_positions: Optional[torch.LongTensor] = None,
- end_positions: Optional[torch.LongTensor] = None,
- output_attentions: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- ) -> Union[Tuple, QuestionAnsweringModelOutput]:
- r"""
- start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the start of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
- Labels for position (index) of the end of the labelled span for computing the token classification loss.
- Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
- are not taken into account for computing the loss.
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-
- outputs = self.transformer(
- input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
-
- sequence_output = outputs[0]
-
- logits = self.qa_outputs(sequence_output)
- start_logits, end_logits = logits.split(1, dim=-1)
- start_logits = start_logits.squeeze(-1).contiguous()
- end_logits = end_logits.squeeze(-1).contiguous()
-
- total_loss = None
- if start_positions is not None and end_positions is not None:
- # If we are on multi-GPU, split add a dimension
- if len(start_positions.size()) > 1:
- start_positions = start_positions.squeeze(-1)
- if len(end_positions.size()) > 1:
- end_positions = end_positions.squeeze(-1)
- # sometimes the start/end positions are outside our model inputs, we ignore these terms
- ignored_index = start_logits.size(1)
- start_positions = start_positions.clamp(0, ignored_index)
- end_positions = end_positions.clamp(0, ignored_index)
-
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
- start_loss = loss_fct(start_logits, start_positions)
- end_loss = loss_fct(end_logits, end_positions)
- total_loss = (start_loss + end_loss) / 2
-
- if not return_dict:
- output = (start_logits, end_logits) + outputs[2:]
- return ((total_loss,) + output) if total_loss is not None else output
-
- return QuestionAnsweringModelOutput(
- loss=total_loss,
- start_logits=start_logits,
- end_logits=end_logits,
- hidden_states=outputs.hidden_states,
- attentions=outputs.attentions,
- )
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。