当前位置:   article > 正文

机器学习(一)数据的预处理_dataset.values[:, :-1]

dataset.values[:, :-1]

一、导入标准库(Python)

  1. import numpy as np --数据分析库
  2. import matplotlib.pyplot as plt --绘图库
  3. import pandas as pd --数据集导入

二、导入数据集

        1.读取文件

dataset = pd.read_csv('Data.csv')    --读取数据集合(csv文件)

        2.创建矩阵

  1. x = dataset.iloc[:,:-1].values --自变量
  2. --iloc表示取数据(行,列) 所有行和除最后一列外的数据
  3. y = dataset.iloc[:,:3].values --因变量
  1. --[]内数据的表示
  2. --[x:y,a] x->起始位置,y->终止位置,a->需要处理的数据的位置

三、处理缺失数据

        这里使用的策略是使用当列的平均值代替缺失数据,此外常用的还有中位数,众数等方法

  1. from sklearn.preprocessing import Imputer --导入缺失数据处理类
  2. imputer = Imputer(missing_values='NaN',strategy = 'mean',axis=0)
  3. --参数含义:缺失数据,采用策略,作用对象为行/列
  4. imputer = imputer.fit(x[:,1:3]) --数据拟合
  5. x[:,1:3] = imputer.transform(x[:,1:3])

四、分类数据

        将不同的类别转换为有意义的数值(例如利用bool、string)

  1. from sklearn.preprocessing import LabelEncoder --标签编码器,转义为数字
  2. labelencoder_X = LabelEncoder(); --创建对象
  3. x[:,0] = labelencoder_X.fit_transform(x[:,0]) --拟合+转换

        虚拟编码:将标签转变为编码,使其没有顺序区别

  1. --需要和上面的转换代码混合使用
  2. from sklearn.preprocessing import OneHotEncoder --引入工具
  3. onehotencoder = OneHotEncoder(categorical_features = [0]) --处理数据集的列号
  4. x = onehotencoder.fit_transform(x).toarry()

五、训练集和测试集

  1. from sklearn.model_selection import train_test_split --引入工具
  2. x_train,x_test,y_trian,y_test = train_test_split(x,y,test_size=0.2,random_state = 0)
  3. --参数:需要划分的数据,测试集比重(一般为0.2-0.25),训练集比重(一般不单独赋值),随机数生成方式
  4. --训练集的自变量、因变量 / 测试集的自变量、因变量

六、特征缩放

        ①用于解决欧氏距离遍历数量级差距过大的问题(若差距过大则会出现由数量关系中的某一组数据主导关系的存在)

                欧氏距离:(斜线公式)

        ②加速决策树的收敛

        如何进行特征缩放

        1.标准化

                         mean--平均值        StanderDeviation--标准方差

                         x会得到一个平均值为0,标准方差为1的分布

        2.正常化

                         0-1区间内的等比缩小

        3.进行缩放

  1. from sklearn.preprocessing import standerScaler --导入工具
  2. sc_x = standardScaler() --类对象
  3. x_train = sc_x.fit_transform(x_train) --拟合+转换
  4. x_test = sc_x.transform(x_test) --已经拟合过了,直接转换

七、数据预处理标准模板

        一般的数据预处理很少用到缺失数据、分类数据,一般使用以下几步

                ①读取数据

                ②测试集和训练集分割

                ③特征缩放(部分情况需要使用)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/370759
推荐阅读
相关标签
  

闽ICP备14008679号