当前位置:   article > 正文

baichuan2 chat模型sft指令微调数据格式分析_baichuan2-13b-chat-4bits微调

baichuan2-13b-chat-4bits微调

一、前言

百川官网:https://www.baichuan-ai.com/
模型权重:https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat
记录一下 baichuan 2 的 tokenizer 及 chat 数据构建格式。

二、数据处理代码

根据官方 githubfinetune 代码,将其 preprocessing 方法抽离单独测试。为方便记录,代码中的注释暂时假设每个汉字为一个token,且 input_ids 的注释和实际 id 不保证对应。

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

path = "Baichuan2-13B-Chat"
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)

user_tokens = [195]
assistant_tokens=[196]
ignore_index = -100
model_max_length = 10

def preprocessing(example):
    input_ids = []
    labels = []

    for message in example["conversations"]:
        from_ = message["from"]
        value = message["value"]
        value_ids = tokenizer.encode(value)

        if from_ == "human":
            input_ids += user_tokens + value_ids    
            labels += [tokenizer.eos_token_id] + [ignore_index] * len(value_ids)
            # input_ids = <reserved_106>    你   是   谁
            # labels    =       </s>      -100 -100  -100
        else:
            input_ids += assistant_tokens + value_ids
            labels += [ignore_index] + value_ids
            # input_ids = <reserved_106>    你   是   谁    <reserved_107>  我  是  木  尧
            # labels    =       </s>      -100 -100  -100        -100       我  是  木  尧

    input_ids.append(tokenizer.eos_token_id)
    labels.append(tokenizer.eos_token_id)
    # input_ids = <reserved_106>    你   是   谁    <reserved_107>   我  是  木  尧    </s>
    # labels    =       </s>      -100 -100  -100        -100       我  是  木  尧   </s>

    # 切片 截断前 model_max_length 个 token
    input_ids = input_ids[:model_max_length]
    labels = labels[:model_max_length]

    input_ids += [tokenizer.pad_token_id] * (model_max_length - len(input_ids))
    labels += [ignore_index] * (model_max_length - len(labels))
    # input_ids = <reserved_106>    你   是   谁    <reserved_107>   我  是  木  尧    </s>  <unk>  <unk>  <unk> ...  <unk>
    # labels    =       </s>      -100 -100  -100        -100       我  是  木  尧    </s>   -100   -100   -100  ... -100

    input_ids = torch.LongTensor(input_ids)
    labels = torch.LongTensor(labels)

    attention_mask = input_ids.ne(tokenizer.pad_token_id) # ne 即 not equal 不等于,不等于unk则为true即mask掉,等于则为false
    # input_ids         = <reserved_106>    你   是   谁    <reserved_107>   我  是   木  尧    </s>  <unk>  <unk>  <unk> ...  <unk>
    # labels            =       </s>      -100  -100  -100       -100        我  是   木  尧    </s>   -100   -100   -100  ... -100
    # attention_mask    =       True        True True True       True     True True True True True  True    True   True  ...  True
    return {
        "input_ids": input_ids,
        "labels": labels,
        "attention_mask": attention_mask,
    }

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58

example 数据格式及运行测试:

preprocessing({
    "system": "",
    "conversations": [
      {
        "from": "human",
        "value": "你是谁"
      },
      {
        "from": "yayi",
        "value": "我是木尧"
      }
    ]
})

# Output:
# {'input_ids': tensor([  195, 92067,   196,  6461, 93334, 95562,     2,     0,     0,     0]),
# 'labels': tensor([    2,  -100,  -100,  6461, 93334, 95562,     2,  -100,  -100,  -100]),
# 'attention_mask': tensor([ True,  True,  True,  True,  True,  True,  True, False, False, False])}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

案例分析:

  • 百川2用预留的 token 表示 human 和 assistant 的内容,上面例子会转化成:<reserved_106>你是谁<reserved_107>我是木尧</s><unk><unk> ... <unk>
    • <reserved_106> (id=195)表示 human 输入。
    • <reserved_107> (id=196)表示 assistant 输出。
  • 首先,遍历 conversations 中的每一轮 human 和 assistant:
    • input_ids:前面拼上各自的标识符(<reserved_106><reserved_107> )之后拼接各自内容对应的 token ids。
    • labels:对于 human 的内容,其标识符对应位置是 </s> (的id),其他位置是 -100,不计算这些 loss 和梯度;对于 assistant 的内容,其标识符对应位置是 -100,其他位置和 input_ids 一致。(为啥开始不是-100而是</s>呢?issue里找到了答案,详见总结部分)
      在这里插入图片描述
  • 然后,分别在 input_ids 和 labels 追加结束符 </s>,并根据 model_max_length 填充 pad token 即 <unk>,或超长截断,并转成 tensor;
  • 最后,构造 attention_mask,非 pad token 的部分全是 true,pad token 部分全是 false,忽略后面这些填充位置的 attention 计算。

三、总结

在这里插入图片描述

上图是简单做了页PPT,以多轮数据为例。把 user_token_id 对应位置的 label 设置为结束符 </s>,推理时拼接多轮时就不用拼接结束符了。因为 human 的第一个token(位于’user_token_id’位置)实际上是与 assistant 部分中最后一个token(‘assistant_token_id’)对应的’next_token_label’。

附上 baichuan2 词表的前 2000 个token(从101: <reserved_12> 到 1088: <reserved_999> 都是预留的 token):

0 <unk>
1 <s>
2 </s>
3 <SEP>
4 <CLS>
5 \n
6 \t
7 <img>
8 <img/>
9 </img>
10 <h2>
11 <h2/>
12 </h2>
13 <td>
14 <td/>
15 </td>
16 <strong>
17 <strong/>
18 </strong>
19 <table>
20 <table/>
21 </table>
22 <tr>
23 <tr/>
24 </tr>
25 <li>
26 <li/>
27 </li>
28 <b>
29 <b/>
30 </b>
31 <h3>
32 <h3/>
33 </h3>
34 <br>
35 <br/>
36 </br>
37 <h4>
38 <h4/>
39 </h4>
40 <h5>
41 <h5/>
42 </h5>
43 <p>
44 <p/>
45 </p>
46 <h1>
47 <h1/>
48 </h1>
49 <tbody>
50 <tbody/>
51 </tbody>
5253545556575859606162 +
63 -
64 =
6566676869707172 .
73 !
74 ?
75 ...
76 。。。
77 。。。。。。
78798081828384 ```
85 <!--
86 -->
87 ---
88 <!DOCTYPE>
8990919293949596979899100101 <reserved_12>
102 <reserved_13>
103 <reserved_14>
104 <reserved_15>
......
1085 <reserved_996>
1086 <reserved_997>
1087 <reserved_998>
1088 <reserved_999>
1089 <0x00>
1090 <0x01>
1091 <0x02>
1092 <0x03>
......
1341 <0xFC>
1342 <0xFD>
1343 <0xFE>
1344 <0xFF>
1345 ▁t
1346 ▁a
1347 in
......
1996 ▁know
1997 ▁sec
1998 研究
1999 ▁these
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/380128
推荐阅读
相关标签
  

闽ICP备14008679号