当前位置:   article > 正文

基于用户的协同过滤算法(JAVA实现)_java协同过滤算法

java协同过滤算法

基于用户的协同过滤算法(JAVA实现)

协同过滤算法

协同过滤(简称CF)是推荐系统最重要的思想之一。在早期,协同过滤几乎等同于推荐系统。主要的功能是预测和推荐。算法通过对用户历史行为数据的挖掘发现用户的偏好,基于不同的偏好对用户进行群组划分并推荐品味相似的商品。协同过滤推荐算法分为两类,分别是:1、基于用户的协同过滤算法(user-based collaboratIve filtering)(相似的用户可能喜欢相同物品);2、基于物品的协同过滤算法(item-based collaborative filtering)(相似的物品可能被同个用户喜欢)。

皮尔森(pearson)相关系数公式

皮尔森相关系数是用来衡量变量之间的线性相关性。但是有一个明显的缺陷就是,它只对线性关系敏感。如果关系是非线性的,哪怕两个变量之间是一一对应的关系,皮尔森相关系数也可能接近0.

如果有两个变量:X、Y,最终计算出的相关系数的含义可以有如下理解:

(1)、当相关系数为0时,X和Y两变量无关系。

(2)、当X的值增大(减小),Y值增大(减小),两个变量为正相关,相关系数在0.00与1.00之间。

(3)、当X的值增大(减小),Y值减小(增大),两个变量为负相关,相关系数在-1.00与0.00之间。

通常情况下通过以下取值范围判断变量的相关强度:
相关系数 0.8-1.0 极强相关
0.6-0.8 强相关
0.4-0.6 中等程度相关
0.2-0.4 弱相关
0.0-0.2 极弱相关或无相关

公式一:
在这里插入图片描述
公式二:
在这里插入图片描述
公式三:
在这里插入图片描述
公式四:
在这里插入图片描述

Java代码实现

Movie电影类:

package com.jun.entity;

/**
 * @author junfeng.lin
 * @date 2021/3/18 13:37
 */
public class Movie implements Comparable<Movie> {
    public String movieName;
    public int score;
    public Movie(String movieName, int score) {
        this.movieName = movieName;
        this.score = score;
    }

    @Override
    public String toString() {
        return "Movie{" +
                "movieName='" + movieName + '\'' +
                ", score=" + score +
                '}';
    }

    @Override
    public int compareTo(Movie o) {
        return score > o.score ? -1 : 1;
    }

}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

User用户类:

package com.jun.entity;

import java.util.ArrayList;
import java.util.List;

/**
 * @author junfeng.lin
 * @date 2021/3/18 13:39
 */
public class User {
    public String username;
    public List<Movie> movieList = new ArrayList<>();

    public User() {}

    public User(String username) {
        this.username = username;
    }

    public User set(String movieName, int score) {
        this.movieList.add(new Movie(movieName, score));
        return this;
    }

    public Movie find(String movieName) {
        for (Movie movie : movieList) {
            if (movie.movieName.equals(username)) {
                return movie;
            }
        }
        return null;
    }

    @Override
    public String toString() {
        return "User{" +
                "username='" + username + '\'' +
                '}';
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41

Recommend逻辑计算类:

package com.jun.Algorithm;

import com.jun.entity.Movie;
import com.jun.entity.User;

import java.util.*;
import java.util.stream.Collectors;
import java.util.stream.IntStream;

/**
 * @author junfeng.lin
 * @date 2021/3/18 13:42
 */
public class Recommend {
    /**
     * 在给定username的情况下,计算其他用户和它的距离并排序
     * @param username
     * @return
     */
    private Map<Double, String> computeNearestNeighbor(String username, List<User> users) {
        Map<Double, String> distances = new TreeMap<>();

        User u1 = new User(username);
        for (User user:users) {
            if (username.equals(user.username)) {
                u1 = user;
            }
        }

        for (int i = 0; i < users.size(); i++) {
            User u2 = users.get(i);

            if (!u2.username.equals(username)) {
                double distance = pearson_dis(u2.movieList, u1.movieList);
                distances.put(distance, u2.username);
            }

        }
        System.out.println("该用户与其他用户的皮尔森相关系数 -> " + distances);
        return distances;
    }


    /**
     * 计算2个打分序列间的pearson距离
     * 选择公式四进行计算
     * @param rating1
     * @param rating2
     * @return
     */
    private double pearson_dis(List<Movie> rating1, List<Movie> rating2) {
        int n=rating1.size();
        List<Integer> rating1ScoreCollect = rating1.stream().map(A -> A.score).collect(Collectors.toList());
        List<Integer> rating2ScoreCollect = rating2.stream().map(A -> A.score).collect(Collectors.toList());

        double Ex= rating1ScoreCollect.stream().mapToDouble(x->x).sum();
        double Ey= rating2ScoreCollect.stream().mapToDouble(y->y).sum();
        double Ex2=rating1ScoreCollect.stream().mapToDouble(x->Math.pow(x,2)).sum();
        double Ey2=rating2ScoreCollect.stream().mapToDouble(y->Math.pow(y,2)).sum();
        double Exy= IntStream.range(0,n).mapToDouble(i->rating1ScoreCollect.get(i)*rating2ScoreCollect.get(i)).sum();
        double numerator=Exy-Ex*Ey/n;
        double denominator=Math.sqrt((Ex2-Math.pow(Ex,2)/n)*(Ey2-Math.pow(Ey,2)/n));
        if (denominator==0) return 0.0;
        return numerator/denominator;
    }


    public List<Movie> recommend(String username, List<User> users) {
        //找到最近邻
        Map<Double, String> distances = computeNearestNeighbor(username, users);
        String nearest = distances.values().iterator().next();
        System.out.println("最近邻 -> " + nearest);

        //找到最近邻看过,但是我们没看过的电影,计算推荐
        User neighborRatings = new User();
        for (User user:users) {
            if (nearest.equals(user.username)) {
                neighborRatings = user;
            }
        }
        System.out.println("最近邻看过的电影 -> " + neighborRatings.movieList);

        User userRatings = new User();
        for (User user:users) {
            if (username.equals(user.username)) {
                userRatings = user;
            }
        }
        System.out.println("用户看过的电影 -> " + userRatings.movieList);

        //根据自己和邻居的电影计算推荐的电影
        List<Movie> recommendationMovies = new ArrayList<>();
        for (Movie movie : neighborRatings.movieList) {
            if (userRatings.find(movie.movieName) == null) {
                recommendationMovies.add(movie);
            }
        }
        Collections.sort(recommendationMovies);
        return recommendationMovies;
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102

Demo测试类:

package com.jun.Main;

import com.jun.Algorithm.Recommend;
import com.jun.entity.Movie;
import com.jun.entity.User;

import java.util.ArrayList;
import java.util.List;

/**
 * @author junfeng.lin
 * @date 2021/3/18 14:07
 */
public class Demo {
    public static void main(String[] args) {
        //输入用户总量
        List<User> users = new ArrayList<>();
        users.add(new User("小明")
                .set("中国合伙人", 50)
                .set("太平轮", 30)
                .set("荒野猎人", 45)
                .set("老炮儿", 50)
                .set("我的少女时代", 30)
                .set("肖洛特烦恼", 45)
                .set("火星救援", 50));

        users.add(new User("小红")
                .set("小时代4", 40)
                .set("荒野猎人", 30)
                .set("我的少女时代", 50)
                .set("肖洛特烦恼", 50)
                .set("火星救援", 30)
                .set("后会无期", 30));


        users.add(new User("小阳")
                .set("小时代4", 20)
                .set("中国合伙人", 50)
                .set("我的少女时代", 30)
                .set("老炮儿", 50)
                .set("肖洛特烦恼", 45)
                .set("速度与激情7", 50));

        users.add(new User("小四")
                .set("小时代4", 50)
                .set("中国合伙人", 30)
                .set("我的少女时代", 40)
                .set("匆匆那年", 40)
                .set("速度与激情7", 35)
                .set("火星救援", 35)
                .set("后会无期", 45));

        users.add(new User("六爷")
                .set("小时代4", 20)
                .set("中国合伙人", 40)
                .set("荒野猎人", 45)
                .set("老炮儿", 50)
                .set("我的少女时代", 20));

        users.add(new User("小李")
                .set("荒野猎人", 50)
                .set("盗梦空间", 50)
                .set("我的少女时代", 30)
                .set("速度与激情7", 50)
                .set("蚁人", 45)
                .set("老炮儿", 40)
                .set("后会无期", 35));

        users.add(new User("隔壁老王")
                .set("荒野猎人", 50)
                .set("中国合伙人", 40)
                .set("我的少女时代", 10)
                .set("Phoenix", 50)
                .set("甄嬛传", 40)
                .set("The Strokes", 50));

        users.add(new User("邻村小芳")
                .set("小时代4", 40)
                .set("我的少女时代", 45)
                .set("匆匆那年", 45)
                .set("甄嬛传", 25)
                .set("The Strokes", 30));


        Recommend recommend = new Recommend();
        List<Movie> recommendationMovies = recommend.recommend("小明", users);
        System.out.println("-----------------------");
        System.out.println("推荐结果如下:");
        for (Movie movie : recommendationMovies) {
            System.out.println("电影:"+movie.movieName+" ,评分:"+movie.score);
        }
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94

运行结果:
在这里插入图片描述

参考文章:
1、https://tarzan.blog.csdn.net/article/details/107720624
2、https://blog.csdn.net/cc_want/article/details/85001762?utm_medium=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.control&dist_request_id=1328665.19107.16160427678669067&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.control

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/391715
推荐阅读
相关标签
  

闽ICP备14008679号