赞
踩
YOLOv7的utils文件夹下的loss文件中给了两种损失函数:computeloss和computelossota,默认都使用computelossota。
YOLOv7一代计算LOSS:
- # Forward
- with amp.autocast(enabled=cuda):
- pred = model(imgs) # forward
- if 'loss_ota' not in hyp or hyp['loss_ota'] == 1:
- loss, loss_items = compute_loss_ota(pred, targets.to(device), imgs) # loss scaled by batch_size
- else:
- loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
- if rank != -1:
- loss *= opt.world_size # gradient averaged between devices in DDP mode
- if opt.quad:
- loss *= 4.
YOLOv7二代计算LOSS:
- # Forward
- with amp.autocast(enabled=cuda):
- pred = model(imgs) # forward
- loss, loss_items = compute_loss_ota(pred, targets.to(device), imgs) # loss scaled by batch_size
- if rank != -1:
- loss *= opt.world_size # gradient averaged between devices in DDP mode
- if opt.quad:
- loss *= 4.
一代版本是根据hyp文件中最后一行,判断使用何种loss,例如默认的hyp.scratch.p5.yaml:
- lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
- lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
- momentum: 0.937 # SGD momentum/Adam beta1
- weight_decay: 0.0005 # optimizer weight decay 5e-4
- warmup_epochs: 3.0 # warmup epochs (fractions ok)
- warmup_momentum: 0.8 # warmup initial momentum
- warmup_bias_lr: 0.1 # warmup initial bias lr
- box: 0.05 # box loss gain
- cls: 0.3 # cls loss gain
- cls_pw: 1.0 # cls BCELoss positive_weight
- obj: 0.7 # obj loss gain (scale with pixels)
- obj_pw: 1.0 # obj BCELoss positive_weight
- iou_t: 0.20 # IoU training threshold
- anchor_t: 4.0 # anchor-multiple threshold
- # anchors: 3 # anchors per output layer (0 to ignore)
- fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
- hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
- hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
- hsv_v: 0.4 # image HSV-Value augmentation (fraction)
- degrees: 0.0 # image rotation (+/- deg)
- translate: 0.2 # image translation (+/- fraction)
- scale: 0.9 # image scale (+/- gain)
- shear: 0.0 # image shear (+/- deg)
- perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
- flipud: 0.0 # image flip up-down (probability)
- fliplr: 0.5 # image flip left-right (probability)
- mosaic: 1.0 # image mosaic (probability)
- mixup: 0.15 # image mixup (probability)
- copy_paste: 0.0 # image copy paste (probability)
- paste_in: 0.15 # image copy paste (probability), use 0 for faster training
- loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
loss_ota: 1 # use ComputeLossOTA, use 0 for faster training,其中的1代表使用ComputeLOSSOTA
二代中hyp文件删掉了最后一行,改为默认使用 computelossota
因此在两代版本改loss函数会有不同,注意改的位置要和使用的loss函数对应,例如使用默认computelossota计算,就要在class computelossota中进行修改
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。