赞
踩
首先我们需要一些数据来对其进行预测:
第0列是我们的序列号,single1,single2,single3是我们需要预测的数据,我们首先需要对其进行读取:
- def read_20180829():
- fname = "20180829.xlsx"
- bk = xlrd.open_workbook(fname)
- # shxrange = range(bk.nsheets)
- try:
- sh = bk.sheet_by_name("Sheet1")
- except:
- print("no sheet in %s named Sheet1" % fname)
- # 获取行数
- nrows = sh.nrows
- # 获取列数
- ncols = sh.ncols
- # 获取第一行第一列数据
- cell_value = sh.cell_value(1, 0)
- time = []
- single1 = []
- single2 = []
- single3 = []
- # 获取各行数据
- for i in range(1, nrows):
- row_data = sh.cell_value(i, 0)
- time.append(row_data)
- for i in range(1, nrows):
- row_data = sh.cell_value(i, 1)
- single1.append(row_data)
- for i in range(1, nrows):
- row_data = sh.cell_value(i, 2)
- single2.append(row_data)
- for i in range(1, nrows):
- row_data = sh.cell_value(i, 3)
- single3.append(row_data)
- return time,single1,single2,single3

得到数据之后我们就可以对其进行预测了:
- import numpy as np
- from matplotlib import pyplot as plt
- from sklearn.svm import SVR
- from read_data import read_20180829
- time,single1,single2,single3 = read_20180829()
- # 需要预测的长度是多少
- long_predict = 40
- def svm_timeseries_prediction(c_parameter,gamma_paramenter):
- X_data = time
- Y_data = single1
- print(len(X_data))
- # 整个数据的长度
- long = len(X_data)
- # 取前多少个X_data预测下一个数据
- X_long = 1
- error = []
- svr_rbf = SVR(kernel='rbf', C=c_parameter, gamma=gamma_paramenter)
- # svr_rbf = SVR(kernel='rbf', C=1e5, gamma=1e1)
- # svr_rbf = SVR(kernel='linear',C=1e5)
- # svr_rbf = SVR(kernel='poly',C=1e2, degree=1)
- X = []
- Y = []
- for k in range(len(X_data) - X_long - 1):
- t = k + X_long
- X.append(Y_data[k:t])
- Y.append(Y_data[t + 1])
- y_rbf = svr_rbf.fit(X[:-long_predict], Y[:-long_predict]).predict(X[:])
- for e in range(len(y_rbf)):
- error.append(Y_data[X_long + 1 + e] - y_rbf[e])
- return X_data,Y_data,X_data[X_long+1:],y_rbf,error
-
-
- X_data,Y_data,X_prediction,y_prediction,error = svm_timeseries_prediction(10,1)
- figure = plt.figure()
- tick_plot = figure.add_subplot(2, 1, 1)
- tick_plot.plot(X_data, Y_data, label='data', color='green', linestyle='-')
- tick_plot.axvline(x=X_data[-long_predict], alpha=0.2, color='gray')
- # tick_plot.plot(X_data[:-X_long-1], y_rbf, label='data', color='red', linestyle='--')
- tick_plot.plot(X_prediction, y_prediction, label='data', color='red', linestyle='--')
- tick_plot = figure.add_subplot(2, 1, 2)
- tick_plot.plot(X_prediction,error)
- plt.show()

相关数据、代码网址:https://github.com/ZhiqiangHo/code-of-csdn/tree/master/time_series_prediction/SVM
我的微信公众号名称:小小何先生
公众号介绍:主要研究强化学习、计算机视觉、深度学习、机器学习等相关内容,分享学习过程中的学习笔记和心得!期待您的关注,欢迎一起学习交流进步!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。