赞
踩
我们将建立和训练一个基本的字符级递归神经网络(RNN)来分类单词。本教程以及另外两个“from scratch”的自然语言处理(NLP)教程 NLP From Scratch: Generating Names with a Character-Level RNN 和 NLP From Scratch: Translation with a Sequence to Sequence Network and Attention,演示如何预处理数据以建立NLP模型。特别是,这些教程没有使用torchtext的许多便利功能,因此您可以看到如何简单使用预处理模型NLP。
字符级RNN将单词作为一系列字符来读取 ,每一步输出一个预测和“隐藏状态”,将之前的隐藏状态输入到下一步。我们把最后的预测作为输出,即这个词属于哪个类。
具体来说,我们将训练来自18种语言的几千个姓氏,并根据拼写来预测一个名字来自哪种语言:
- $ python predict.py Hinton
- (-0.47) Scottish
- (-1.52) English
- (-3.57) Irish
-
- $ python predict.py Schmidhuber
- (-0.19) German
- (-2.48) Czech
- (-2.68) Dutch
在开始本教程之前,建议您安装PyTorch,并对Python编程语言和张量有基本的了解:
了解rnn及其工作原理也很有用:
从这里下载数据并将其解压缩到当前目录。here
“data/names”目录下包含18个文本文件,文件名为“[Language].txt”。每个文件包含一堆名称,每行一个名称,大多数是罗马化的(但我们仍然需要从Unicode转换为ASCII)。
我们最终会得到一个包含每种语言名称列表的字典,{language: [names ...]}。通用变量“category”和“line”(在本例中表示语言和名称)用于以后的可扩展性。
- from io import open
- import glob
- import os
-
- def findFiles(path): return glob.glob(path)
-
- print(findFiles('data/names/*.txt'))
-
- import unicodedata
- import string
-
- all_letters = string.ascii_letters + " .,;'"
- n_letters = len(all_letters)
-
- # Turn a Unicode string to plain ASCII, thanks to https://stackoverflow.com/a/518232/2809427
- def unicodeToAscii(s):
- return ''.join(
- c for c in unicodedata.normalize('NFD', s)
- if unicodedata.category(c) != 'Mn'
- and c in all_letters
- )
-
- print(unicodeToAscii('Ślusàrski'))
-
- # Build the category_lines dictionary, a list of names per language
- category_lines = {}
- all_categories = []
-
- # Read a file and split into lines
- def readLines(filename):
- lines = open(filename, encoding='utf-8').read().strip().split('\n')
- return [unicodeToAscii(line) for line in lines]
-
- for filename in findFiles('data/names/*.txt'):
- category = os.path.splitext(os.path.basename(filename))[0]
- all_categories.append(category)
- lines = readLines(filename)
- category_lines[category] = lines
-
- n_categories = len(all_categories)
输出
- ['data/names/Arabic.txt', 'data/names/Chinese.txt', 'data/names/Czech.txt', 'data/names/Dutch.txt', 'data/names/English.txt', 'data/names/French.txt', 'data/names/German.txt', 'data/names/Greek.txt', 'data/names/Irish.txt', 'data/names/Italian.txt', 'data/names/Japanese.txt', 'data/names/Korean.txt', 'data/names/Polish.txt', 'data/names/Portuguese.txt', 'data/names/Russian.txt', 'data/names/Scottish.txt', 'data/names/Spanish.txt', 'data/names/Vietnamese.txt']
- Slusarski
现在我们有了category_lines,这是一个将每个类别(语言)映射到行(名称)列表的字典。我们还记录了all_categories(只是一个语言列表)和n_categories,以供以后参考。
print(category_lines['Italian'][:5])
输出
['Abandonato', 'Abatangelo', 'Abatantuono', 'Abate', 'Abategiovanni']
现在我们已经组织好了所有的名字,我们需要把它们变成张量来使用它们。
为了表示单个字母,我们使用大小为<1 x n_letters> 的 “one-hot vector”。一个独热向量被0填充,除了当前字母所以处是1。例如:"b" = <0 1 0 0 0 ...>.
为了组成一个单词,我们将一堆这样的单词连接到一个二维矩阵中<line_length x 1 x n_letters>.
额外的1维度是因为PyTorch假设所有的东西都是分批的——我们在这里只是使用1的批大小。
- import torch
-
- # Find letter index from all_letters, e.g. "a" = 0
- def letterToIndex(letter):
- return all_letters.find(letter)
-
- # Just for demonstration, turn a letter into a <1 x n_letters> Tensor
- def letterToTensor(letter):
- tensor = torch.zeros(1, n_letters)
- tensor[0][letterToIndex(letter)] = 1
- return tensor
-
- # Turn a line into a <line_length x 1 x n_letters>,
- # or an array of one-hot letter vectors
- def lineToTensor(line):
- tensor = torch.zeros(len(line), 1, n_letters)
- for li, letter in enumerate(line):
- tensor[li][0][letterToIndex(letter)] = 1
- return tensor
-
- print(letterToTensor('J'))
-
- print(lineToTensor('Jones').size())
输出
- tensor([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
- 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
- 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
- 0., 0., 0.]])
- torch.Size([5, 1, 57])
在autograd之前,在Torch中创建循环神经网络涉及到在几个时间步上克隆一层的参数。图层包含隐藏状态和梯度,现在完全由图形本身处理。这意味着你可以以一种非常“纯粹”的方式实现RNN,作为常规的前馈层。
这个RNN模块(主要是从the PyTorch for Torch users tutorial复制的)只有2个线性层,在输入和隐藏状态上操作,在输出之后有一个LogSoftmax层。
- import torch.nn as nn
-
- class RNN(nn.Module):
- def __init__(self, input_size, hidden_size, output_size):
- super(RNN, self).__init__()
-
- self.hidden_size = hidden_size
-
- self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
- self.h2o = nn.Linear(hidden_size, output_size)
- self.softmax = nn.LogSoftmax(dim=1)
-
- def forward(self, input, hidden):
- combined = torch.cat((input, hidden), 1)
- hidden = self.i2h(combined)
- output = self.h2o(hidden)
- output = self.softmax(output)
- return output, hidden
-
- def initHidden(self):
- return torch.zeros(1, self.hidden_size)
-
- n_hidden = 128
- rnn = RNN(n_letters, n_hidden, n_categories)
为了运行这个网络的一个步骤,我们需要传递一个输入(在我们的例子中,是当前字母的张量)和一个先前的隐藏状态(我们一开始将其初始化为零)。我们将返回输出(每种语言的概率)和下一个隐藏状态(我们将其保留到下一步)。
- input = letterToTensor('A')
- hidden = torch.zeros(1, n_hidden)
-
- output, next_hidden = rnn(input, hidden)
为了提高效率,我们不想为每一步都创建一个新的张量,所以我们将使用lineToTensor而不是letterToTensor并使用切片。这可以通过预计算张量批次来进一步优化。
- input = lineToTensor('Albert')
- hidden = torch.zeros(1, n_hidden)
-
- output, next_hidden = rnn(input[0], hidden)
- print(output)
输出
- tensor([[-2.9083, -2.9270, -2.9167, -2.9590, -2.9108, -2.8332, -2.8906, -2.8325,
- -2.8521, -2.9279, -2.8452, -2.8754, -2.8565, -2.9733, -2.9201, -2.8233,
- -2.9298, -2.8624]], grad_fn=<LogSoftmaxBackward0>)
正如您所看到的,输出是一个<1 x n_categories> 张量,其中每个项目是该类别的可能性(越高越有可能)。
在开始训练之前,我们应该编写一些辅助函数。首先是解释网络的输出,我们知道这是每个类别的可能性。我们可以用Tensor.topk得到最大值的索引:
- def categoryFromOutput(output):
- top_n, top_i = output.topk(1)
- category_i = top_i[0].item()
- return all_categories[category_i], category_i
-
- print(categoryFromOutput(output))
输出
('Scottish', 15)
我们还需要一种快速获取训练示例(名称及其语言)的方法:
- import random
-
- def randomChoice(l):
- return l[random.randint(0, len(l) - 1)]
-
- def randomTrainingExample():
- category = randomChoice(all_categories)
- line = randomChoice(category_lines[category])
- category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long)
- line_tensor = lineToTensor(line)
- return category, line, category_tensor, line_tensor
-
- for i in range(10):
- category, line, category_tensor, line_tensor = randomTrainingExample()
- print('category =', category, '/ line =', line)
输出
- category = Chinese / line = Hou
- category = Scottish / line = Mckay
- category = Arabic / line = Cham
- category = Russian / line = V'Yurkov
- category = Irish / line = O'Keeffe
- category = French / line = Belrose
- category = Spanish / line = Silva
- category = Japanese / line = Fuchida
- category = Greek / line = Tsahalis
- category = Korean / line = Chang
现在训练这个网络所需要做的就是给它看一堆例子,让它猜测,然后告诉它是否错了。
对于损失函数nn.NLLLoss是合适的,因为RNN的最后一层是nn.LogSoftmax.。
criterion = nn.NLLLoss()
每个训练循环将:
- learning_rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn
-
- def train(category_tensor, line_tensor):
- hidden = rnn.initHidden()
-
- rnn.zero_grad()
-
- for i in range(line_tensor.size()[0]):
- output, hidden = rnn(line_tensor[i], hidden)
-
- loss = criterion(output, category_tensor)
- loss.backward()
-
- # Add parameters' gradients to their values, multiplied by learning rate
- for p in rnn.parameters():
- p.data.add_(p.grad.data, alpha=-learning_rate)
- return output, loss.item()
现在我们只需要用一堆例子来运行它。由于train函数返回输出和损失,我们可以打印它的猜测并跟踪损失以便绘制。由于有1000个示例,我们只打印每个print_every示例,并取损失的平均值。
- import time
- import math
-
- n_iters = 100000
- print_every = 5000
- plot_every = 1000
-
-
-
- # Keep track of losses for plotting
- current_loss = 0
- all_losses = []
-
- def timeSince(since):
- now = time.time()
- s = now - since
- m = math.floor(s / 60)
- s -= m * 60
- return '%dm %ds' % (m, s)
-
- start = time.time()
-
- for iter in range(1, n_iters + 1):
- category, line, category_tensor, line_tensor = randomTrainingExample()
- output, loss = train(category_tensor, line_tensor)
- current_loss += loss
-
- # Print ``iter`` number, loss, name and guess
- if iter % print_every == 0:
- guess, guess_i = categoryFromOutput(output)
- correct = '✓' if guess == category else '✗ (%s)' % category
- print('%d %d%% (%s) %.4f %s / %s %s' % (iter, iter / n_iters * 100, timeSince(start), loss, line, guess, correct))
-
- # Add current loss avg to list of losses
- if iter % plot_every == 0:
- all_losses.append(current_loss / plot_every)
- current_loss = 0
输出
- 5000 5% (0m 33s) 2.6379 Horigome / Japanese ✓
- 10000 10% (1m 5s) 2.0172 Miazga / Japanese ✗ (Polish)
- 15000 15% (1m 39s) 0.2680 Yukhvidov / Russian ✓
- 20000 20% (2m 12s) 1.8239 Mclaughlin / Irish ✗ (Scottish)
- 25000 25% (2m 45s) 0.6978 Banh / Vietnamese ✓
- 30000 30% (3m 18s) 1.7433 Machado / Japanese ✗ (Portuguese)
- 35000 35% (3m 51s) 0.0340 Fotopoulos / Greek ✓
- 40000 40% (4m 23s) 1.4637 Quirke / Irish ✓
- 45000 45% (4m 57s) 1.9018 Reier / French ✗ (German)
- 50000 50% (5m 30s) 0.9174 Hou / Chinese ✓
- 55000 55% (6m 2s) 1.0506 Duan / Vietnamese ✗ (Chinese)
- 60000 60% (6m 35s) 0.9617 Giang / Vietnamese ✓
- 65000 65% (7m 9s) 2.4557 Cober / German ✗ (Czech)
- 70000 70% (7m 42s) 0.8502 Mateus / Portuguese ✓
- 75000 75% (8m 14s) 0.2750 Hamilton / Scottish ✓
- 80000 80% (8m 47s) 0.7515 Maessen / Dutch ✓
- 85000 85% (9m 20s) 0.0912 Gan / Chinese ✓
- 90000 90% (9m 53s) 0.1190 Bellomi / Italian ✓
- 95000 95% (10m 26s) 0.0137 Vozgov / Russian ✓
- 100000 100% (10m 59s) 0.7808 Tong / Vietnamese ✓
绘制all_losses的历史损失图显示了网络的学习情况:
- import matplotlib.pyplot as plt
- import matplotlib.ticker as ticker
-
- plt.figure()
- plt.plot(all_losses)
输出
[<matplotlib.lines.Line2D object at 0x7f16606095a0>]
为了了解网络在不同类别上的表现如何,我们将创建一个混淆矩阵,表示网络猜测(列)的每种语言(行)。为了计算混淆矩阵,使用evaluate(),在网络中运行一堆样本,这与 train() 去掉反向传播相同。
- # Keep track of correct guesses in a confusion matrix
- confusion = torch.zeros(n_categories, n_categories)
- n_confusion = 10000
-
- # Just return an output given a line
- def evaluate(line_tensor):
- hidden = rnn.initHidden()
-
- for i in range(line_tensor.size()[0]):
- output, hidden = rnn(line_tensor[i], hidden)
-
- return output
-
- # Go through a bunch of examples and record which are correctly guessed
- for i in range(n_confusion):
- category, line, category_tensor, line_tensor = randomTrainingExample()
- output = evaluate(line_tensor)
- guess, guess_i = categoryFromOutput(output)
- category_i = all_categories.index(category)
- confusion[category_i][guess_i] += 1
-
- # Normalize by dividing every row by its sum
- for i in range(n_categories):
- confusion[i] = confusion[i] / confusion[i].sum()
-
- # Set up plot
- fig = plt.figure()
- ax = fig.add_subplot(111)
- cax = ax.matshow(confusion.numpy())
- fig.colorbar(cax)
-
- # Set up axes
- ax.set_xticklabels([''] + all_categories, rotation=90)
- ax.set_yticklabels([''] + all_categories)
-
- # Force label at every tick
- ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
- ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
-
- # sphinx_gallery_thumbnail_number = 2
- plt.show()
输出
- /var/lib/jenkins/workspace/intermediate_source/char_rnn_classification_tutorial.py:445: UserWarning:
-
- FixedFormatter should only be used together with FixedLocator
-
- /var/lib/jenkins/workspace/intermediate_source/char_rnn_classification_tutorial.py:446: UserWarning:
-
- FixedFormatter should only be used together with FixedLocator
你可以从主轴上挑出亮点,显示它猜错了哪些语言,例如中文猜错了韩语,西班牙语猜错了意大利语。它似乎在希腊语上表现得很好,而在英语上表现得很差(可能是因为与其他语言重叠)。
- def predict(input_line, n_predictions=3):
- print('\n> %s' % input_line)
- with torch.no_grad():
- output = evaluate(lineToTensor(input_line))
-
- # Get top N categories
- topv, topi = output.topk(n_predictions, 1, True)
- predictions = []
-
- for i in range(n_predictions):
- value = topv[0][i].item()
- category_index = topi[0][i].item()
- print('(%.2f) %s' % (value, all_categories[category_index]))
- predictions.append([value, all_categories[category_index]])
-
- predict('Dovesky')
- predict('Jackson')
- predict('Satoshi')
输出
- > Dovesky
- (-0.57) Czech
- (-0.97) Russian
- (-3.43) English
-
- > Jackson
- (-1.02) Scottish
- (-1.49) Russian
- (-1.96) English
-
- > Satoshi
- (-0.42) Japanese
- (-1.70) Polish
- (-2.74) Italian
in the Practical PyTorch repo中脚本的最终版本将上述代码拆分为几个文件:
运行train.py来训练和保存网络。
运行predict.py并输入一个名称来查看预测:
- $ python predict.py Hazaki
- (-0.42) Japanese
- (-1.39) Polish
- (-3.51) Czech
运行server.py 并访问http://localhost:5533/Yourname以获得预测的JSON输出。
尝试使用不同的数据集 -> 类别,例如:
使用一个更大的和/或更好的形状网络,可以获得更好的结果
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。