赞
踩
person bicycle car motorbike aeroplane bus train truck boat traffic light fire hydrant stop sign parking meter bench bird cat dog horse sheep cow elephant bear zebra giraffe backpack umbrella handbag tie suitcase frisbee skis snowboard sports ball kite baseball bat baseball glove skateboard surfboard tennis racket bottle wine glass cup fork knife spoon bowl banana apple sandwich orange broccoli carrot hot dog pizza donut cake chair sofa pottedplant bed diningtable toilet tvmonitor laptop mouse remote keyboard cell phone microwave oven toaster sink refrigerator book clock vase scissors teddy bear hair drier toothbrush
aeroplane bicycle bird boat bottle bus car cat chair cow diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor
txt格式,每行从左往右分别:
<bbox_left>,<bbox_top>,<bbox_width>,<bbox_height>,,<object_category>,,
YOLOv5训练visdrone数据集模型:
https://download.csdn.net/download/weixin_51154380/76852338
https://download.csdn.net/download/weixin_51154380/61665581
YOLOv3训练visdrone数据集模型:
https://download.csdn.net/download/weixin_51154380/62900703
Darknet版YOLOv3训练Visdrone数据集模型:
https://download.csdn.net/download/weixin_51154380/85356551
Darknet版YOLOv4训练Visdrone数据集模型:
https://download.csdn.net/download/weixin_51154380/85356535
pedestrian people bicycle car van truck tricycle awning-tricycle bus motor [ 'pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor' ] id2cls = { 0: 'pedestrian', 1: 'people', 2: 'bicycle', 3: 'car', 4: 'van', 5: 'truck', 6: 'tricycle', 7: 'awning-tricycle', 8: 'bus', 9: 'motor' } cls2id = { 'pedestrian': 0, 'people': 1, 'bicycle': 2, 'car': 3, 'van': 4, 'truck': 5, 'tricycle': 6, 'awning-tricycle': 7, 'bus': 8, 'motor': 9 }
# _*_ coding:utf-8 _*_ from tqdm import tqdm import cv2 import time import os """ Visdrone_txt -> YOLO_txt 时间: 2022.4.29 作者: 余小晖 """ def convert_box(size, box): # Convert VisDrone box to YOLO xywh box # size= (w,h) dw = 1. / size[0] dh = 1. / size[1] xywh = (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh return xywh file_path = './Visdrone/' # files = os.listdir(file_path) files = [ 'VisDrone2019-DET-train','VisDrone2019-DET-train', 'VisDrone2019-DET-val'] for file in files: img_path = file_path + file + '/images/' ann_path = file_path + file + '/annotations/' ann_save_path = file_path + file + '/labels-1/' if not os.path.exists(ann_save_path): os.makedirs(ann_save_path) imgs = os.listdir(img_path) for i, img in enumerate(tqdm(imgs)): if i == 9999: a = 1 totle_name = img.split('.')[0] ann_name = totle_name+ '.txt' image = cv2.imread(img_path+ img) img_size = image.shape size = (img_size[1], img_size[0]) with open(ann_path+ ann_name, 'r') as f: lines = f.readlines() for line in lines: line = line.strip().split(',') cls = int(line[5]) - 1 # Visdrone数据集原始标签中ID从1开始计数 if line[4] != '0': # line[4]=0 表示该数据有问题? box = [float(x) for x in line] xywh = convert_box(size, box) # convert VisDrone box to YOLO xywh box label_value = [str(cls), str(xywh[0]), str(xywh[1]), str(xywh[2]), str(xywh[3])] label_value = str.join(' ', label_value) with open(ann_save_path+ ann_name, 'a')as s: s.write(label_value+ '\n') else: continue print(time.ctime())
各种尺度无人机数据集,
classes: drone
; 数据量:数万张;标签格式:VOC和YOLO格式;用于无人机的视觉检测和跟踪
数据集:
https://download.csdn.net/download/weixin_51154380/32037320
https://download.csdn.net/download/weixin_51154380/33247430
https://download.csdn.net/download/weixin_51154380/33505984
https://download.csdn.net/download/weixin_51154380/40682385
https://download.csdn.net/download/weixin_51154380/41115718
https://download.csdn.net/download/weixin_51154380/70898609
https://download.csdn.net/download/weixin_51154380/85152808
https://download.csdn.net/download/weixin_51154380/85152887
https://download.csdn.net/download/weixin_51154380/85152886
Darknet版YOLOv3、v4无人机检测模型:
https://download.csdn.net/download/weixin_51154380/85351292
https://download.csdn.net/download/weixin_51154380/51112089
Pytorch版YOLOv5无人机模型:
https://download.csdn.net/download/weixin_51154380/51087322
YOLOv5-Deepsort无人机视觉检测和跟踪:
https://download.csdn.net/download/weixin_51154380/61540776
检测结果可视化:
检测结果可视化:
1、标签格式为VOC和YOLO两种格式
2、classes: bike
2、 数量: 1800
下载链接
1、标签格式为VOC和YOLO
2、classes: fire、smoke
2、 数量: 1360+
下载链接
classes: fall
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。