当前位置:   article > 正文

阿克曼结构移动机器人的gazebo仿真(三)_controller_spawner中的spawner是一个python脚本吗

controller_spawner中的spawner是一个python脚本吗

阿克曼结构移动机器人的gazebo仿真(三)

第三章、让小车动起来

1.配置controller

在tianracer_description功能包新建config文件夹,通过一个yaml文件smart_control_config.yaml来声明我们所需要的controller,以及对应的参数,PID增益和 控制器设置必须保存在yaml文件中,然后通过 launch文件加载到param服务器上:

tianracer:
# controls the rear two tires based on individual motors
  # Publish all joint states -----------------------------------
  joint_state_controller:
    type: joint_state_controller/JointStateController
    publish_rate: 50  
  rear_right_velocity_controller:
    type: velocity_controllers/JointVelocityController
    joint: right_rear_wheel_joint
    pid: {p: 100.0, i: 0.01, d: 10.0}
  rear_left_velocity_controller:
    type: velocity_controllers/JointVelocityController
    joint: left_rear_wheel_joint
    pid: {p: 100.0, i: 0.01, d: 10.0}
  front_right_steering_position_controller:
    type: effort_controllers/JointPositionController
    joint: right_steering_hinge_joint
    pid: {p: 4.0, i: 2.0, d: 1.0}    
  front_left_steering_position_controller:
    type: effort_controllers/JointPositionController
    joint: left_steering_hinge_joint
    pid: {p: 4.0, i: 2.0, d: 1.0}
   gazebo_ros_control:
    pid_gains:
      right_rear_wheel_joint:
        p: 100.0
        i: 0.5
        d: 0.0
      left_rear_wheel_joint:
        p: 100.0
        i: 0.5
        d: 0.0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

2.配置launch文件

创建一个 rosLaunch 文件以启动 ros_control controllers,使用launch文件control.launch,运行controller_manager中的spawner,加载并运行这些上边这些controller:

<?xml version="1.0" encoding="UTF-8"?>
<launch>


  <!-- Load joint controller configurations from YAML file to parameter server -->
  <rosparam file="$(find tianracer_description)/config/smart_control_config.yaml" command="load"/>

  <!-- load controllers -->
  <node name="controller_spawner" pkg="controller_manager" type="spawner" respawn="false"
        output="screen" ns="/tianracer" args="joint_state_controller rear_right_velocity_controller rear_left_velocity_controller front_right_steering_position_controller front_left_steering_position_controller"/>

  <node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_state_publisher"
      respawn="true" output="screen">
      <remap from="/joint_states" to="/tianracer/joint_states" />
  </node>

  <node name="cmdvel2gazebo" pkg="tianracer_description" type="cmdvel2gazebo.py" respawn="true" output="screen"/>

</launch>

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

接着创建一个可以将小车模型在gazebo中打开的launch文件tianracer.launch,并且能够加载上述control.launch文件

<?xml version="1.0" encoding="UTF-8"?>
<launch>
	    <!-- 设置launch文件的参数 -->
    <arg name="paused" default="false"/>
    <arg name="use_sim_time" default="true"/>
    <arg name="gui" default="true"/>
    <arg name="headless" default="false"/>
    <arg name="debug" default="false"/>
    <!--模型车的起点放置位置-->
    <arg name="x_pos" default="0"/>
    <arg name="y_pos" default="0"/>
    <arg name="z_pos" default="0"/>
    <arg name="R_pos" default="0"/>
    <arg name="P_pos" default="0"/>
    <arg name="Y_pos" default="0"/>

	<!--运行gazebo仿真环境-->
	<include file="$(find gazebo_ros)/launch/empty_world.launch">
        	<arg name="debug" value="$(arg debug)" />
        	<arg name="gui" value="$(arg gui)" />
        	<arg name="paused" value="$(arg paused)"/>
        	<arg name="use_sim_time" value="$(arg use_sim_time)"/>
        	<arg name="headless" value="$(arg headless)"/>
	 <!-- <arg name="world_name" value="$(find racebot_description)/world/tianracer_race.world"/> -->
               <!-- .world文件的地址-->
    	</include>

	<!-- 加载机器人模型描述参数 -->
	<param name="robot_description" command="$(find xacro)/xacro --inorder '$(find tianracer_description)/urdf/tianracer_description.xacro'"/>

  	    <!-- 在gazebo中加载机器人模型-->
    <node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" respawn="false" output="screen"
          args="-urdf -model tianracer -param robot_description -x $(arg x_pos) -y $(arg y_pos) -z $(arg z_pos) -R $(arg R_pos) -P $(arg P_pos) -Y $(arg Y_pos)"/> 

          
  <!-- ros_control racecar launch file -->
  <include file="$(find tianracer_description)/launch/control.launch">
  </include>

    <!--Launch the simulation joystick control-->
  <!-- <rosparam command="load" file="$(find tianracer_gazebo)/config/keyboard_teleop.yaml" />
  <node pkg="tianracer_gazebo" type="keyboard_teleop.py" name="keyboard_teleop" /> -->

</launch>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

3.配置运动学模型

在功能包中新建scripts文件夹,并加入cmdvel2gazebo.py文件,该文件用的是

从零开始自动驾驶07

中的开源代码,其中代码的解析这里不做展开复述,各位请自行到原地址观看,up主讲的很好。该文件定义了小车的运动学模型,并且订阅了一个Twist消息类型的话题tianracer/cmd_vel,我们可以通过编写一个接收该消息类型话题的节点来控制小车运动。

代码如下:

#!/usr/bin/env python

import rospy
from std_msgs.msg import Float64
from geometry_msgs.msg import Twist
import math


class CmdVel2Gazebo:

    def __init__(self):
        rospy.init_node('cmdvel2gazebo', anonymous=True)
        
        rospy.Subscriber('/tianracer/cmd_vel', Twist, self.callback, queue_size=1)

        self.pub_steerL = rospy.Publisher('/tianracer/front_left_steering_position_controller/command', Float64, queue_size=1)
        self.pub_steerR = rospy.Publisher('/tianracer/front_right_steering_position_controller/command', Float64, queue_size=1)
        self.pub_rearL = rospy.Publisher('/tianracer/rear_left_velocity_controller/command', Float64, queue_size=1)
        self.pub_rearR = rospy.Publisher('/tianracer/rear_right_velocity_controller/command', Float64, queue_size=1)

        # initial velocity and tire angle are 0
        self.x = 0
        self.z = 0

        # car Wheelbase (in m)
        self.L = 0.261

        # car Tread
        self.T_front = 0.1632
        self.T_rear = 0.1632

        # how many seconds delay for the dead man's switch
        self.timeout=rospy.Duration.from_sec(0.2);
        self.lastMsg=rospy.Time.now()

        # maximum steer angle of the "inside" tire
        self.maxsteerInside=0.6;

        # turning radius for maximum steer angle just with the inside tire
        # tan(maxsteerInside) = wheelbase/radius --> solve for max radius at this angle
        rMax = self.L/math.tan(self.maxsteerInside);

        # radius of inside tire is rMax, so radius of the ideal middle tire (rIdeal) is rMax+treadwidth/2
        rIdeal = rMax+(self.T_front/2.0)

        # maximum steering angle for ideal middle tire
        # tan(angle) = wheelbase/radius
        self.maxsteer=math.atan2(self.L,rIdeal)

        # loop
        rate = rospy.Rate(10) # run at 10Hz
        while not rospy.is_shutdown():
            self.publish()
            rate.sleep()
        

    def callback(self,data):
        # w = v / r
        self.x = data.linear.x / 0.3
        # constrain the ideal steering angle such that the ackermann steering is maxed out
        self.z = max(-self.maxsteer,min(self.maxsteer,data.angular.z))
        self.lastMsg = rospy.Time.now()

    def publish(self):
        # now that these values are published, we
        # reset the velocity, so that if we don't hear new
        # ones for the next timestep that we time out; note
        # that the tire angle will not change
        # NOTE: we only set self.x to be 0 after 200ms of timeout
        delta_last_msg_time = rospy.Time.now() - self.lastMsg
        msgs_too_old = delta_last_msg_time > self.timeout
        if msgs_too_old:
            self.x = 0
            msgRear = Float64()
            msgRear.data = self.x
            self.pub_rearL.publish(msgRear)
            self.pub_rearR.publish(msgRear)
            msgSteer = Float64()
            msgSteer.data = 0
            self.pub_steerL.publish(msgSteer)
            self.pub_steerR.publish(msgSteer)

            return

        # The self.z is the delta angle in radians of the imaginary front wheel of ackerman model.
        if self.z != 0:
            T_rear = self.T_rear
            T_front = self.T_front
            L=self.L
            # self.v is the linear *velocity*
            r = L/math.fabs(math.tan(self.z))

            rL_rear = r-(math.copysign(1,self.z)*(T_rear/2.0))
            rR_rear = r+(math.copysign(1,self.z)*(T_rear/2.0))
            rL_front = r-(math.copysign(1,self.z)*(T_front/2.0))
            rR_front = r+(math.copysign(1,self.z)*(T_front/2.0))
            msgRearR = Float64()
            # the right tire will go a little faster when we turn left (positive angle)
            # amount is proportional to the radius of the outside/ideal
            msgRearR.data = self.x*rR_rear/r;
            msgRearL = Float64()
            # the left tire will go a little slower when we turn left (positive angle)
            # amount is proportional to the radius of the inside/ideal
            msgRearL.data = self.x*rL_rear/r;

            self.pub_rearL.publish(msgRearL)
            self.pub_rearR.publish(msgRearR)

            msgSteerL = Float64()
            msgSteerR = Float64()
            # the left tire's angle is solved directly from geometry
            msgSteerL.data = math.atan2(L,rL_front)*math.copysign(1,self.z)
            self.pub_steerL.publish(msgSteerL)
    
            # the right tire's angle is solved directly from geometry
            msgSteerR.data = math.atan2(L,rR_front)*math.copysign(1,self.z)
            self.pub_steerR.publish(msgSteerR)
        else:
            # if we aren't turning
            msgRear = Float64()
            msgRear.data = self.x;
            self.pub_rearL.publish(msgRear)
            # msgRear.data = 0;
            self.pub_rearR.publish(msgRear)

            msgSteer = Float64()
            msgSteer.data = self.z

            self.pub_steerL.publish(msgSteer)
            self.pub_steerR.publish(msgSteer)


if __name__ == '__main__':
    try:
        CmdVel2Gazebo()
    except rospy.ROSInterruptException:
        pass
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137

将代码中的话题名以及参数进行修改,改为自己小车模型的尺寸参数。并将该python代码作为一个节点添加到control.launch文件中。

4.让小车动起来

通过rostopic pub话题让小车动起来

到此为止已经可以通过pub话题让小车动起来了。

roslaunch tianracer_description tianracer.launch 
  • 1

再开一个终端,使用rostopic list来看一下话题列表

rostopic list
  • 1

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Qq0utZZt-1648997968232)(/home/zyx/blog/三/1.png)]

可以看到发布了单目摄像头,深度摄像头,激光雷达,以及让小车运动的tianracer/cmd_vel话题,将这个话题pub一下:

rostopic pub /tianracer/cmd_vel -r 10 geometry_msgs/Twist "linear:
  x: 1.0
  y: 0.0
  z: 0.0
angular:
  x: 0.0
  y: 0.0
  z: 1.0" 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

此时小车便会绕着Z轴转动起来。

使用键盘控制节点控制小车运动

在tianracer_description/scripts目录下新建teleop.py

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import rospy
from geometry_msgs.msg import Twist
import sys, select, termios, tty

msg = """
Control mbot!
---------------------------
Moving around:
   u    i    o
   j    k    l
   m    ,    .

q/z : increase/decrease max speeds by 10%
w/x : increase/decrease only linear speed by 10%
e/c : increase/decrease only angular speed by 10%
space key, k : force stop
anything else : stop smoothly

CTRL-C to quit
"""

moveBindings = {
        'i':(1,0),
        'o':(1,-1),
        'j':(0,1),
        'l':(0,-1),
        'u':(1,1),
        ',':(-1,0),
        '.':(-1,1),
        'm':(-1,-1),
           }

speedBindings={
        'q':(1.1,1.1),
        'z':(.9,.9),
        'w':(1.1,1),
        'x':(.9,1),
        'e':(1,1.1),
        'c':(1,.9),
          }

def getKey():
    tty.setraw(sys.stdin.fileno())
    rlist, _, _ = select.select([sys.stdin], [], [], 0.1)
    if rlist:
        key = sys.stdin.read(1)
    else:
        key = ''

    termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings)
    return key

speed = 10
turn = 1

def vels(speed,turn):
    return "currently:\tspeed %s\tturn %s " % (speed,turn)

if __name__=="__main__":
    settings = termios.tcgetattr(sys.stdin)
    
    rospy.init_node('carsmart_teleop')
    pub = rospy.Publisher('/tianracer/cmd_vel', Twist, queue_size=5)

    x = 0
    th = 0
    status = 0
    count = 0
    acc = 0.1
    target_speed = 0
    target_turn = 0
    control_speed = 0
    control_turn = 0
    try:
        print msg
        print vels(speed,turn)
        while(1):
            key = getKey()
            # 运动控制方向键(1:正方向,-1负方向)
            if key in moveBindings.keys():
                x = moveBindings[key][0]
                th = moveBindings[key][1]
                count = 0
            # 速度修改键
            elif key in speedBindings.keys():
                speed = speed * speedBindings[key][0]  # 线速度增加0.1倍
                turn = turn * speedBindings[key][1]    # 角速度增加0.1倍
                count = 0

                print vels(speed,turn)
                if (status == 14):
                    print msg
                status = (status + 1) % 15
            # 停止键
            elif key == ' ' or key == 'k' :
                x = 0
                th = 0
                control_speed = 0
                control_turn = 0
            else:
                count = count + 1
                if count > 4:
                    x = 0
                    th = 0
                if (key == '\x03'):
                    break

            # 目标速度=速度值*方向值
            target_speed = speed * x
            target_turn = turn * th

            # 速度限位,防止速度增减过快
            if target_speed > control_speed:
                control_speed = min( target_speed, control_speed + 0.02 )
            elif target_speed < control_speed:
                control_speed = max( target_speed, control_speed - 0.02 )
            else:
                control_speed = target_speed

            if target_turn > control_turn:
                control_turn = min( target_turn, control_turn + 0.1 )
            elif target_turn < control_turn:
                control_turn = max( target_turn, control_turn - 0.1 )
            else:
                control_turn = target_turn

            # 创建并发布twist消息
            twist = Twist()
            twist.linear.x = control_speed; 
            twist.linear.y = 0; 
            twist.linear.z = 0
            twist.angular.x = 0; 
            twist.angular.y = 0; 
            twist.angular.z = control_turn
            pub.publish(twist)

    except:
        print e

    finally:
        twist = Twist()
        twist.linear.x = 0; twist.linear.y = 0; twist.linear.z = 0
        twist.angular.x = 0; twist.angular.y = 0; twist.angular.z = 0
        pub.publish(twist)

    termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150

该节点发布了一个Twist消息类型的话题tianracer/cmd_vel,可以通过键盘来控制小车运动。

roslaunch tianracer_description tianracer.launch 
rosrun tianracer_description teleop.py 
  • 1
  • 2

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Pt8ssmTh-1648997968234)(/home/zyx/blog/三/2.png)]

此时按u,i,o等按键即可控制小车运动了,通过rqt_graph看一下各个节点之间的关系:

rqt_graph
  • 1

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wxebxHV6-1648997968235)(/home/zyx/blog/三/3.png)]

小结

至此,已经成功让小车动起来了,而且也添加了激光雷达传感器,这也就意味着接下去就能做建图导航了,然而由于从solidworks导出的模型惯性参数等方面的一些问题,导致小车运动起来多多少少有一些问题,所以我手撸了小车的1:1简易模型的代码,并且准备用ackermann消息控制小车运动,并使用该模型完成接下去的建图导航等内容。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fT719EvH-1648997968235)(/home/zyx/blog/三/4.png)]

参考资料

1.古月老师的<<ROS机器人开发实践>>
2.从零驾驶自动驾驶

声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号