当前位置:   article > 正文

YOLOv8 关键点检测模型训练部署

YOLOv8 关键点检测模型训练部署

1、YOLOv8安装及使用

参考链接: 同济子豪兄视频
github原文链接

# 安装yolov8
pip install ultralytics --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple

# 验证安装成功
import ultralytics
ultralytics.checks()

# 安装其它第三方工具包
pip install numpy opencv-python pillow pandas matplotlib seaborn tqdm wandb seedir emoji -i https://pypi.tuna.tsinghua.edu.cn/simple
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

在这里插入图片描述

1.2、命令行使用

在这里插入图片描述
1、命令行对图片进行推理预测

# 目标检测预测
yolo detect predict model=yolov8x.pt source=2.jpg device=0

# 图像分割预测
yolo segment predict model=yolov8x-seg.pt source=2.jpg device=0

# 图像分类预测
yolo classify predict model=yolov8x-cls.pt source=1.jpeg device=0

# 人体姿态估计(关键点检测)预测
yolo pose predict model=yolov8x-pose-p6.pt source=1.jpeg device=0

# 预测结果保存在runs目录
# YOLOV8命令行模板
yolo task=detect    mode=train    model=yolov8n.yaml      args...
          classify       predict        yolov8n-cls.yaml  args...
          segment        val            yolov8n-seg.yaml  args...
                         export         yolov8n.pt        format=onnx  args...

# YOLOV8预测命令行参数
https://docs.ultralytics.com/usage/cfg/#predict
https://docs.ultralytics.com/modes/predict
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

2、命令行对视频进行推理预测

# 目标检测预测
yolo detect predict model=yolov8x.pt source=videos/video_fruits.mp4 device=0

# 图像分割预测
yolo segment predict model=yolov8x-seg.pt source=videos/video_fruits.mp4 device=0

# 图像分类预测
yolo classify predict model=yolov8x-cls.pt source=videos/video_2.mp4 device=0

# 人体姿态估计(关键点检测)预测
yolo pose predict model=yolov8x-pose-p6.pt source=videos/cxk.mp4 device=0
yolo pose predict model=yolov8x-pose-p6.pt source=videos/mother_wx.mp4 device=0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

3、命令行对摄像头数据进行实时推理

yolo pose predict model=yolov8n-pose.pt source=0 show
  • 1

文档

# YOLOV8官方文档
YOLOV8文档:https://docs.ultralytics.com

YOLOV8的Github主页:https://github.com/ultralytics/ultralytics

# YOLOV8预训练模型库
https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/v8

# YOLOV8-Pose任务预训练模型
https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models#pose

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

1.3、使用python-API模型预测

# 导入工具包
from ultralytics import YOLO

import cv2
import matplotlib.pyplot as plt
%matplotlib inline

import torch
# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device:', device)

# 载入模型
model = YOLO('yolov8x-pose-p6.pt')

# 计算设备
# 切换计算设备
model.to(device)
# 模型自带信息
model.device
# 模型名字
model.names

# 预测
# 传入图像、视频、摄像头ID(对应命令行的 source 参数
img_path = '1.jpg'
results = model(img_path)

# 解析预测结果
len(results)
result[0]
# 预测框的所有类别(MS COCO数据集八十类)
results[0].names

# 预测类别 ID
results[0].boxes.cls

# 有几个预测框
num_bbox = len(results[0].boxes.cls)
print('预测出 {} 个框'.format(num_bbox))

# 每个框的置信度
results[0].boxes.conf

# 每个框的:左上角XY坐标、右下角XY坐标
results[0].boxes.xyxy

# 转成整数的 numpy array
bboxes_xyxy = results[0].boxes.xyxy.cpu().numpy().astype('uint32')


# 每个框,每个关键点的 XY坐标 置信度
results[0].keypoints.shape

bboxes_keypoints = results[0].keypoints.data.cpu().numpy().astype('uint32')
bboxes_keypoints

# opencv可视化关键点
img_bgr = cv2.imread(img_path)
plt.imshow(img_bgr[:,:,::-1])
plt.show()

# 框(rectangle)可视化配置
bbox_color = (150, 0, 0)             # 框的 BGR 颜色
bbox_thickness = 6                   # 框的线宽

# 框类别文字
bbox_labelstr = {
    'font_size':6,         # 字体大小
    'font_thickness':14,   # 字体粗细
    'offset_x':0,          # X 方向,文字偏移距离,向右为正
    'offset_y':-80,        # Y 方向,文字偏移距离,向下为正
}

# 关键点 BGR 配色
kpt_color_map = {
    0:{'name':'Nose', 'color':[0, 0, 255], 'radius':25},                # 鼻尖
    1:{'name':'Right Eye', 'color':[255, 0, 0], 'radius':25},           # 右边眼睛
    2:{'name':'Left Eye', 'color':[255, 0, 0], 'radius':25},            # 左边眼睛
    3:{'name':'Right Ear', 'color':[0, 255, 0], 'radius':25},           # 右边耳朵
    4:{'name':'Left Ear', 'color':[0, 255, 0], 'radius':25},            # 左边耳朵
    5:{'name':'Right Shoulder', 'color':[193, 182, 255], 'radius':25},  # 右边肩膀
    6:{'name':'Left Shoulder', 'color':[193, 182, 255], 'radius':25},   # 左边肩膀
    7:{'name':'Right Elbow', 'color':[16, 144, 247], 'radius':25},      # 右侧胳膊肘
    8:{'name':'Left Elbow', 'color':[16, 144, 247], 'radius':25},       # 左侧胳膊肘
    9:{'name':'Right Wrist', 'color':[1, 240, 255], 'radius':25},       # 右侧手腕
    10:{'name':'Left Wrist', 'color':[1, 240, 255], 'radius':25},       # 左侧手腕
    11:{'name':'Right Hip', 'color':[140, 47, 240], 'radius':25},       # 右侧胯
    12:{'name':'Left Hip', 'color':[140, 47, 240], 'radius':25},        # 左侧胯
    13:{'name':'Right Knee', 'color':[223, 155, 60], 'radius':25},      # 右侧膝盖
    14:{'name':'Left Knee', 'color':[223, 155, 60], 'radius':25},       # 左侧膝盖
    15:{'name':'Right Ankle', 'color':[139, 0, 0], 'radius':25},        # 右侧脚踝
    16:{'name':'Left Ankle', 'color':[139, 0, 0], 'radius':25},         # 左侧脚踝
}

# 点类别文字
kpt_labelstr = {
    'font_size':4,             # 字体大小
    'font_thickness':10,       # 字体粗细
    'offset_x':0,             # X 方向,文字偏移距离,向右为正
    'offset_y':150,            # Y 方向,文字偏移距离,向下为正
}

# 骨架连接 BGR 配色
skeleton_map = [
    {'srt_kpt_id':15, 'dst_kpt_id':13, 'color':[0, 100, 255], 'thickness':5},       # 右侧脚踝-右侧膝盖
    {'srt_kpt_id':13, 'dst_kpt_id':11, 'color':[0, 255, 0], 'thickness':5},         # 右侧膝盖-右侧胯
    {'srt_kpt_id':16, 'dst_kpt_id':14, 'color':[255, 0, 0], 'thickness':5},         # 左侧脚踝-左侧膝盖
    {'srt_kpt_id':14, 'dst_kpt_id':12, 'color':[0, 0, 255], 'thickness':5},         # 左侧膝盖-左侧胯
    {'srt_kpt_id':11, 'dst_kpt_id':12, 'color':[122, 160, 255], 'thickness':5},     # 右侧胯-左侧胯
    {'srt_kpt_id':5, 'dst_kpt_id':11, 'color':[139, 0, 139], 'thickness':5},        # 右边肩膀-右侧胯
    {'srt_kpt_id':6, 'dst_kpt_id':12, 'color':[237, 149, 100], 'thickness':5},      # 左边肩膀-左侧胯
    {'srt_kpt_id':5, 'dst_kpt_id':6, 'color':[152, 251, 152], 'thickness':5},       # 右边肩膀-左边肩膀
    {'srt_kpt_id':5, 'dst_kpt_id':7, 'color':[148, 0, 69], 'thickness':5},          # 右边肩膀-右侧胳膊肘
    {'srt_kpt_id':6, 'dst_kpt_id':8, 'color':[0, 75, 255], 'thickness':5},          # 左边肩膀-左侧胳膊肘
    {'srt_kpt_id':7, 'dst_kpt_id':9, 'color':[56, 230, 25], 'thickness':5},         # 右侧胳膊肘-右侧手腕
    {'srt_kpt_id':8, 'dst_kpt_id':10, 'color':[0,240, 240], 'thickness':5},         # 左侧胳膊肘-左侧手腕
    {'srt_kpt_id':1, 'dst_kpt_id':2, 'color':[224,255, 255], 'thickness':5},        # 右边眼睛-左边眼睛
    {'srt_kpt_id':0, 'dst_kpt_id':1, 'color':[47,255, 173], 'thickness':5},         # 鼻尖-左边眼睛
    {'srt_kpt_id':0, 'dst_kpt_id':2, 'color':[203,192,255], 'thickness':5},         # 鼻尖-左边眼睛
    {'srt_kpt_id':1, 'dst_kpt_id':3, 'color':[196, 75, 255], 'thickness':5},        # 右边眼睛-右边耳朵
    {'srt_kpt_id':2, 'dst_kpt_id':4, 'color':[86, 0, 25], 'thickness':5},           # 左边眼睛-左边耳朵
    {'srt_kpt_id':3, 'dst_kpt_id':5, 'color':[255,255, 0], 'thickness':5},          # 右边耳朵-右边肩膀
    {'srt_kpt_id':4, 'dst_kpt_id':6, 'color':[255, 18, 200], 'thickness':5}         # 左边耳朵-左边肩膀
]


for idx in range(num_bbox): # 遍历每个框
    
    # 获取该框坐标
    bbox_xyxy = bboxes_xyxy[idx] 
    
    # 获取框的预测类别(对于关键点检测,只有一个类别)
    bbox_label = results[0].names[0]
    
    # 画框
    img_bgr = cv2.rectangle(img_bgr, (bbox_xyxy[0], bbox_xyxy[1]), (bbox_xyxy[2], bbox_xyxy[3]), bbox_color, bbox_thickness)
    
    # 写框类别文字:图片,文字字符串,文字左上角坐标,字体,字体大小,颜色,字体粗细
    img_bgr = cv2.putText(img_bgr, bbox_label, (bbox_xyxy[0]+bbox_labelstr['offset_x'], bbox_xyxy[1]+bbox_labelstr['offset_y']), cv2.FONT_HERSHEY_SIMPLEX, bbox_labelstr['font_size'], bbox_color, bbox_labelstr['font_thickness'])
    
    bbox_keypoints = bboxes_keypoints[idx] # 该框所有关键点坐标和置信度
    
    # 画该框的骨架连接
    for skeleton in skeleton_map:
        
        # 获取起始点坐标
        srt_kpt_id = skeleton['srt_kpt_id']
        srt_kpt_x = bbox_keypoints[srt_kpt_id][0]
        srt_kpt_y = bbox_keypoints[srt_kpt_id][1]
        
        # 获取终止点坐标
        dst_kpt_id = skeleton['dst_kpt_id']
        dst_kpt_x = bbox_keypoints[dst_kpt_id][0]
        dst_kpt_y = bbox_keypoints[dst_kpt_id][1]
        
        # 获取骨架连接颜色
        skeleton_color = skeleton['color']
        
        # 获取骨架连接线宽
        skeleton_thickness = skeleton['thickness']
        
        # 画骨架连接
        img_bgr = cv2.line(img_bgr, (srt_kpt_x, srt_kpt_y),(dst_kpt_x, dst_kpt_y),color=skeleton_color,thickness=skeleton_thickness)
        
    # 画该框的关键点
    for kpt_id in kpt_color_map:
        
        # 获取该关键点的颜色、半径、XY坐标
        kpt_color = kpt_color_map[kpt_id]['color']
        kpt_radius = kpt_color_map[kpt_id]['radius']
        kpt_x = bbox_keypoints[kpt_id][0]
        kpt_y = bbox_keypoints[kpt_id][1]
        
        # 画圆:图片、XY坐标、半径、颜色、线宽(-1为填充)
        img_bgr = cv2.circle(img_bgr, (kpt_x, kpt_y), kpt_radius, kpt_color, -1)
        
        # 写关键点类别文字:图片,文字字符串,文字左上角坐标,字体,字体大小,颜色,字体粗细
        kpt_label = str(kpt_id) # 写关键点类别 ID(二选一)
        # kpt_label = str(kpt_color_map[kpt_id]['name']) # 写关键点类别名称(二选一)
        img_bgr = cv2.putText(img_bgr, kpt_label, (kpt_x+kpt_labelstr['offset_x'], kpt_y+kpt_labelstr['offset_y']), cv2.FONT_HERSHEY_SIMPLEX, kpt_labelstr['font_size'], kpt_color, kpt_labelstr['font_thickness'])

plt.imshow(img_bgr[:,:,::-1])
plt.show()

cv2.imwrite('C1_output.jpg', img_bgr)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186

逐帧处理函数

def process_frame(img_bgr):
    
    '''
    输入摄像头画面 bgr-array,输出图像 bgr-array
    '''
    
    results = model(img_bgr, verbose=False) # verbose设置为False,不单独打印每一帧预测结果
    
    # 预测框的个数
    num_bbox = len(results[0].boxes.cls)
    
    # 预测框的 xyxy 坐标
    bboxes_xyxy = results[0].boxes.xyxy.cpu().numpy().astype('uint32') 
    
    # 关键点的 xy 坐标
    bboxes_keypoints = results[0].keypoints.cpu().numpy().astype('uint32')
    
    for idx in range(num_bbox): # 遍历每个框

        # 获取该框坐标
        bbox_xyxy = bboxes_xyxy[idx] 

        # 获取框的预测类别(对于关键点检测,只有一个类别)
        bbox_label = results[0].names[0]

        # 画框
        img_bgr = cv2.rectangle(img_bgr, (bbox_xyxy[0], bbox_xyxy[1]), (bbox_xyxy[2], bbox_xyxy[3]), bbox_color, bbox_thickness)

        # 写框类别文字:图片,文字字符串,文字左上角坐标,字体,字体大小,颜色,字体粗细
        img_bgr = cv2.putText(img_bgr, bbox_label, (bbox_xyxy[0]+bbox_labelstr['offset_x'], bbox_xyxy[1]+bbox_labelstr['offset_y']), cv2.FONT_HERSHEY_SIMPLEX, bbox_labelstr['font_size'], bbox_color, bbox_labelstr['font_thickness'])

        bbox_keypoints = bboxes_keypoints[idx] # 该框所有关键点坐标和置信度

        # 画该框的骨架连接
        for skeleton in skeleton_map:

            # 获取起始点坐标
            srt_kpt_id = skeleton['srt_kpt_id']
            srt_kpt_x = bbox_keypoints[srt_kpt_id][0]
            srt_kpt_y = bbox_keypoints[srt_kpt_id][1]

            # 获取终止点坐标
            dst_kpt_id = skeleton['dst_kpt_id']
            dst_kpt_x = bbox_keypoints[dst_kpt_id][0]
            dst_kpt_y = bbox_keypoints[dst_kpt_id][1]

            # 获取骨架连接颜色
            skeleton_color = skeleton['color']

            # 获取骨架连接线宽
            skeleton_thickness = skeleton['thickness']

            # 画骨架连接
            img_bgr = cv2.line(img_bgr, (srt_kpt_x, srt_kpt_y),(dst_kpt_x, dst_kpt_y),color=skeleton_color,thickness=skeleton_thickness)       
            
        # 画该框的关键点
        for kpt_id in kpt_color_map:

            # 获取该关键点的颜色、半径、XY坐标
            kpt_color = kpt_color_map[kpt_id]['color']
            kpt_radius = kpt_color_map[kpt_id]['radius']
            kpt_x = bbox_keypoints[kpt_id][0]
            kpt_y = bbox_keypoints[kpt_id][1]

            # 画圆:图片、XY坐标、半径、颜色、线宽(-1为填充)
            img_bgr = cv2.circle(img_bgr, (kpt_x, kpt_y), kpt_radius, kpt_color, -1)

            # 写关键点类别文字:图片,文字字符串,文字左上角坐标,字体,字体大小,颜色,字体粗细
            kpt_label = str(kpt_id) # 写关键点类别 ID(二选一)
            # kpt_label = str(kpt_color_map[kpt_id]['name']) # 写关键点类别名称(二选一)
            img_bgr = cv2.putText(img_bgr, kpt_label, (kpt_x+kpt_labelstr['offset_x'], kpt_y+kpt_labelstr['offset_y']), cv2.FONT_HERSHEY_SIMPLEX, kpt_labelstr['font_size'], kpt_color, kpt_labelstr['font_thickness'])
    
    return img_bgr
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73

视频逐帧处理(模板)

def generate_video(input_path='videos/robot.mp4'):
    filehead = input_path.split('/')[-1]
    output_path = "out-" + filehead
    
    print('视频开始处理',input_path)
    
    # 获取视频总帧数
    cap = cv2.VideoCapture(input_path)
    frame_count = 0
    while(cap.isOpened()):
        success, frame = cap.read()
        frame_count += 1
        if not success:
            break
    cap.release()
    print('视频总帧数为',frame_count)
    
    # cv2.namedWindow('Crack Detection and Measurement Video Processing')
    cap = cv2.VideoCapture(input_path)
    frame_size = (cap.get(cv2.CAP_PROP_FRAME_WIDTH), cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

    # fourcc = int(cap.get(cv2.CAP_PROP_FOURCC))
    # fourcc = cv2.VideoWriter_fourcc(*'XVID')
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    fps = cap.get(cv2.CAP_PROP_FPS)

    out = cv2.VideoWriter(output_path, fourcc, fps, (int(frame_size[0]), int(frame_size[1])))
    
    # 进度条绑定视频总帧数
    with tqdm(total=frame_count-1) as pbar:
        try:
            while(cap.isOpened()):
                success, frame = cap.read()
                if not success:
                    break

                # 处理帧
                # frame_path = './temp_frame.png'
                # cv2.imwrite(frame_path, frame)
                try:
                    frame = process_frame(frame)
                except:
                    print('error')
                    pass
                
                if success == True:
                    # cv2.imshow('Video Processing', frame)
                    out.write(frame)

                    # 进度条更新一帧
                    pbar.update(1)

                # if cv2.waitKey(1) & 0xFF == ord('q'):
                    # break
        except:
            print('中途中断')
            pass

    cv2.destroyAllWindows()
    out.release()
    cap.release()
    print('视频已保存', output_path)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62

1.4、pt转换ONNX

python-api

from ultralytics import YOLO
model = YOLO('yolov8n-pose.pt')
success = model.export(format='onnx')
  • 1
  • 2
  • 3

验证onnx是否转换成功

import onnx

# 读取 ONNX 模型
onnx_model = onnx.load('checkpoint/Triangle_215_yolov8l_pretrain.onnx')

# 检查模型格式是否正确
onnx.checker.check_model(onnx_model)

print('无报错,onnx模型载入成功')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

命令行转换

# 导出onnx文件
yolo export model=weights/yolov8s-seg.pt format=onnx simplify=True opset=12
  • 1
  • 2

2、训练三角板关键点检测模型

训练使用到的数据集下载

在这里插入图片描述
在这里插入图片描述

下载yaml文件

wget https://zihao-download.obs.cn-east-3.myhuaweicloud.com/yolov8/datasets/Triangle_215_Dataset/Triangle_215.yaml
  • 1

几个比较重要的训练参数
model YOLOV8模型

data 配置文件(.yaml格式)

pretrained 是否在预训练模型权重基础上迁移学习泛化微调

epochs 训练轮次,默认100

batch batch-size,默认16

imgsz 输入图像宽高尺寸,默认640

device 计算设备(device=0 或 device=0,1,2,3 或 device=cpu)

project 项目名称,建议同一个数据集取同一个项目名称

name 实验名称,建议每一次训练对应一个实验名称

optimizer 梯度下降优化器,默认’SGD’,备选:[‘SGD’, ‘Adam’, ‘AdamW’, ‘RMSProp’]

close_mosaic 是否关闭马赛克图像扩增,默认为0,也就是开启马赛克图像扩增

cls 目标检测分类损失函数cls_loss权重,默认0.5

box 目标检测框定位损失函数box_loss权重,默认7.5

dfl 类别不均衡时Dual Focal Loss损失函数dfl_loss权重,默认1.5。

pose 关键点定位损失函数pose_loss权重,默认12.0(只在关键点检测训练时用到)

kobj 关键点置信度损失函数keypoint_loss权重,默认2.0(只在关键点检测训练时用到)

2.1、训练命令

如果遇到报错CUDA out of memory,内核-关闭所有内核,或调小batch参数

# yolov8n-pose模型,迁移学习微调
!yolo pose train data=Triangle_215.yaml model=yolov8n-pose.pt pretrained=True project=Triangle_215 name=n_pretrain epochs=50 batch=16 device=0

# yolov8n-pose模型,随机初始权重,从头重新学习
!yolo pose train data=Triangle_215.yaml model=yolov8n-pose.pt project=Triangle_215 name=n_scratch epochs=50 batch=16 device=0

# 训练yolov8s-pose关键点检测模型
# yolov8s-pose模型,迁移学习微调
!yolo pose train data=Triangle_215.yaml model=yolov8s-pose.pt pretrained=True project=Triangle_215 name=s_pretrain epochs=50 batch=16 device=0

# yolov8s-pose模型,随机初始权重,从头重新学习
!yolo pose train data=Triangle_215.yaml model=yolov8s-pose.pt project=Triangle_215 name=s_scratch epochs=50 batch=16 device=0

训练yolov8m-pose关键点检测模型
# yolov8m-pose模型,迁移学习微调
!yolo pose train data=Triangle_215.yaml model=yolov8m-pose.pt pretrained=True project=Triangle_215 name=m_pretrain epochs=50 batch=16 device=0

# yolov8m-pose模型,随机初始权重,从头重新学习
!yolo pose train data=Triangle_215.yaml model=yolov8m-pose.pt project=Triangle_215 name=m_scratch epochs=50 batch=16 device=0

# 训练yolov8l-pose关键点检测模型
# yolov8l-pose模型,迁移学习微调
!yolo pose train data=Triangle_215.yaml model=yolov8l-pose.pt pretrained=True project=Triangle_215 name=l_pretrain epochs=50 batch=4 device=0

# yolov8l-pose模型,随机初始权重,从头重新学习
!yolo pose train data=Triangle_215.yaml model=yolov8l-pose.pt project=Triangle_215 name=l_scratch epochs=50 batch=4 device=0

# 训练yolov8x-pose关键点检测模型
# yolov8x-pose模型,迁移学习微调
!yolo pose train data=Triangle_215.yaml model=yolov8x-pose.pt pretrained=True project=Triangle_215 name=x_pretrain epochs=50 batch=4 device=0

# yolov8x-pose模型,随机初始权重,从头重新学习
!yolo pose train data=Triangle_215.yaml model=yolov8x-pose.pt project=Triangle_215 name=x_scratch epochs=50 batch=4 device=0

# 训练yolov8x-pose-p6关键点检测模型
# yolov8x-pose-p6模型,迁移学习微调
!yolo pose train data=Triangle_215.yaml model=yolov8x-pose-p6.pt pretrained=True imgsz=1280 project=Triangle_215 name=x_p6_pretrain epochs=50 batch=2 device=0

# yolov8x-pose-p6模型,随机初始权重,从头重新学习
!yolo pose train data=Triangle_215.yaml model=yolov8x-pose-p6.pt imgsz=1280 project=Triangle_215 name=x_p6_scratch epochs=50 batch=2 device=0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

训练日志和评估指标可视化

训练得到的模型权重文件
最优模型:Project_Name/Name/weights/best.pt

最终模型:Project_Name/Name/weights/last.pt

数据集标注统计
目标检测框的中心点位置分布、宽高分布:labels.jpg

目标检测框的中心点X、中心点Y、宽、高相关分布:labels_correlogram.jpg

训练集:某一个batch的标注可视化
train_batch0.jpg

train_batch1.jpg

train_batch2.jpg

测试集:某一个batch的标注、预测结果可视化
标注:val_batch0_labels.jpg

预测结果:val_batch0_pred.jpg

标注:val_batch1_labels.jpg

预测结果:val_batch1_pred.jpg

目标检测评估指标
不同置信度的Precision:BoxP_curve.png

不同置信度的Recall:BoxR_curve.png

不同置信度的PR曲线:BoxPR_curve.png

不同置信度的F1:BoxF1_curve.png

目标检测框混淆矩阵:confusion_matrix.png

关键点检测评估指标
不同置信度的Precision:PoseP_curve.png

不同置信度的Recall:PoseR_curve.png

不同置信度的PR曲线:PosePR_curve.png

不同置信度的F1:PoseF1_curve.png
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45

3、ONNX Runtime部署

# 安装CPU版本的ONNX Runtime(二选一运行)

# CPU
!pip install onnxruntime -i https://pypi.tuna.tsinghua.edu.cn/simple


#安装GPU版本的ONNX Runtime(二选一运行)
# # GPU
# !pip install onnxruntime-gpu -i https://pypi.tuna.tsinghua.edu.cn/simple
# 验证安装配置成功
import onnxruntime
onnxruntime.get_device()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

ONNX Runtime推理预测-单张图像

import cv2
import numpy as np
from PIL import Image

import onnxruntime
import torch
# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

import matplotlib.pyplot as plt

kpts_shape = [3, 3] # 关键点 shape

ort_session = onnxruntime.InferenceSession('checkpoint/Triangle_215_yolov8l_pretrain.onnx', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])

import torch
x = torch.randn(1, 3, 640, 640).numpy()
x.shape
(1, 3, 640, 640)
ort_inputs = {'images': x}
ort_output = ort_session.run(['output0'], ort_inputs)[0]


# 获得ONNX模型输入层和数据维度
model_input = ort_session.get_inputs()
input_name = [model_input[0].name]
input_name
['images']
input_shape = model_input[0].shape
input_shape
[1, 3, 640, 640]
input_height, input_width = input_shape[2:]

# 获得ONNX模型输出层和数据维度
model_output = ort_session.get_outputs()
output_name = [model_output[0].name]
output_name
['output0']
output_shape = model_output[0].shape
output_shape

# 载入图像
img_path = 'images/Triangle_4.jpg'
# 导入 BGR 格式的图像
img_bgr = cv2.imread(img_path)
# 获取原图尺寸
img_bgr.shape
(3712, 5568, 3)
## BGR 转 RGB
# img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
# plt.imshow(img_rgb)
# plt.show()
预处理-缩放图像尺寸
# 预处理-缩放图像尺寸
img_bgr_640 = cv2.resize(img_bgr, [input_height, input_width])
img_bgr_640.shape
(640, 640, 3)
img_rgb_640 = img_bgr_640[:,:,::-1]
plt.imshow(img_rgb_640)
plt.show()

# X 方向 图像缩放比例
x_ratio = img_bgr.shape[1] / input_width
x_ratio
8.7
# Y 方向 图像缩放比例
y_ratio = img_bgr.shape[0] / input_height
y_ratio
5.8
预处理-构造输入张量
# 预处理-归一化
input_tensor = img_rgb_640 / 255

# 预处理-构造输入 Tensor
input_tensor = np.expand_dims(input_tensor, axis=0) # 加 batch 维度
input_tensor = input_tensor.transpose((0, 3, 1, 2)) # N, C, H, W
input_tensor = np.ascontiguousarray(input_tensor)   # 将内存不连续存储的数组,转换为内存连续存储的数组,使得内存访问速度更快
input_tensor = torch.from_numpy(input_tensor).to(device).float() # 转 Pytorch Tensor
# input_tensor = input_tensor.half() # 是否开启半精度,即 uint8 转 fp16,默认转 fp32 
input_tensor.shape
torch.Size([1, 3, 640, 640])
执行推理预测
# ONNX Runtime 推理预测
ort_output = ort_session.run(output_name, {input_name[0]: input_tensor.numpy()})[0]

# 转 Tensor
preds = torch.Tensor(ort_output)
preds.shape

后处理-置信度过滤、NMS过滤
from ultralytics.yolo.utils import ops
preds = ops.non_max_suppression(preds, conf_thres=0.25, iou_thres=0.7, nc=1)
pred = preds[0]
pred.shape

解析目标检测预测结果
pred_det = pred[:, :6].cpu().numpy()
# 目标检测预测结果:左上角X、左上角Y、右下角X、右下角Y、置信度、类别ID
pred_det

num_bbox = len(pred_det)
print('预测出 {} 个框'.format(num_bbox))

# 类别
bboxes_cls = pred_det[:, 5]
bboxes_cls

# 置信度
bboxes_conf = pred_det[:, 4]
bboxes_conf
pred_det
# 目标检测框 XYXY 坐标
# 还原为缩放之前原图上的坐标
pred_det[:, 0] = pred_det[:, 0] * x_ratio
pred_det[:, 1] = pred_det[:, 1] * y_ratio
pred_det[:, 2] = pred_det[:, 2] * x_ratio
pred_det[:, 3] = pred_det[:, 3] * y_ratio
bboxes_xyxy = pred_det[:, :4].astype('uint32')

解析关键点检测预测结果
pred_kpts = pred[:, 6:].view(len(pred), kpts_shape[0], kpts_shape[1])
pred_kpts.shape
bboxes_keypoints = pred_kpts.cpu().numpy()
bboxes_keypoints

# 还原为缩放之前原图上的坐标
bboxes_keypoints[:,:,0] = bboxes_keypoints[:,:,0] * x_ratio
bboxes_keypoints[:,:,1] = bboxes_keypoints[:,:,1] * y_ratio
bboxes_keypoints = bboxes_keypoints.astype('uint32')

# OpenCV可视化关键点
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/498488
推荐阅读
相关标签
  

闽ICP备14008679号