赞
踩
DNA甲基化是表观遗传学的中最为常见的一种修饰,其主要形式包括:5-甲基胞嘧啶 (5-mC)、少量的N6-甲基腺嘌呤 (N6-mA) 以及7-甲基鸟嘌呤(7-mG)。
目前常说的DNA甲基化一般指CpG岛甲基化,即在DNA甲基化转移酶(DNMTs)的作用下使CpG二核苷酸5’端的胞嘧啶转变为5’甲基胞嘧啶。
CpG岛(CpG islands):指CpG序列密度相比整个基因组来说是特别高的富集区域,一般位于启动子附近,5’端非翻译区或第一个外显子;一般CpG岛序列长度在500bp以上,GC含量高于55%以及CpG出现比率大于0.65,40%的启动子区域含有CpG岛。
CpG shores指距CpG岛边缘2kb的区域
CpG shelves是指距CpG岛边缘4kb的区域
甲基化芯片的原理是基于亚硫酸盐处理后的DNA序列杂交的信号探测。
上图左边一列是非甲基化的GpC locus,右边是甲基化的GpC locus,上下分别是Infinium I 和Infinium Ⅱ
通过计算甲基化(信号A)和未甲基化(信号B)等位基因之间的强度比来确定DNA甲基化水平(β值)。
平均β=信号B /(信号A +信号B + 100)
具体地,β值是由甲基化(M对应于信号A)和未甲基化(U对应于信号B)等位基因的强度计算的,荧光信号的比率β= Max(M,0)/ [Max( M,0)+ Max(U,0)+ 100]。
因此,β值的范围从0(完全未甲基化)到1(完全甲基化)
具体的β值的意义是:
任何等于或大于0.6的β值都被认为是完全甲基化的。
任何等于或小于0.2的β值被认为是完全未甲基化的。
β值在0.2和0.6之间被认为是部分甲基化的。
背景校正
红光和绿光的校正
控制芯片的使用(illumina450K本身有一些控制芯片,可以用来做质控,如亚硫酸盐处理效率)
探针类型(I型和II型)的校正(不同探针类型产生的数据不同)
位置的校正(芯片上的不同位置产生的数据可能会有偏差)
批次的校正(不同的批次做的数据会有偏差)
探针序列本身是否可靠(有些探针本身位于repeat区或者包含snp等就会影响杂交及最后的结果,应该去除,附上一片参考文献,里边有list可以用来去除不好的探针)
图源:ChAMP: updated methylation analysis pipeline for Illumina BeadChips
myLoad <- cham.load(testDir)
# Or you may separate about code as champ.import(testDir) + champ.filter()
CpG.GUI()
champ.QC() # Alternatively: QC.GUI()
myNorm <- champ.norm()
champ.SVD()
# If Batch detected, run champ.runCombat() here.
myDMP <- champ.DMP()
DMP.GUI()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。