赞
踩
作者Toby,来源公众号:Python风控模型 SimpleImputer缺失数据处理报错解决方案
今天有学员反馈缺失值代码报错,由于sklearn缺失值处理的包升级,下面把官网最新的缺失值处理代码奉上。
参考https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
例子
>>> import numpy as np
>>> from sklearn.impute import SimpleImputer
>>> imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')
>>> imp_mean.fit([[7, 2, 3], [4, np.nan, 6], [10, 5, 9]])
SimpleImputer()
>>> X = [[np.nan, 2, 3], [4, np.nan, 6], [10, np.nan, 9]]
>>> print(imp_mean.transform(X))
[[ 7. 2. 3. ]
[ 4. 3.5 6. ]
[10. 3.5 9. ]]
sklearn.impute
.SimpleImputerclass sklearn.impute.
SimpleImputer
(*, missing_values=nan, strategy='mean', fill_value=None, verbose=0, copy=True, add_indicator=False)[source]
Imputation transformer for completing missing values.
Read more in the User Guide.
New in version 0.20: SimpleImputer
replaces the previous sklearn.preprocessing.Imputer
estimator which is now removed.
Parameters
If X is not an array of floating values;
If X is encoded as a CSR matrix;
If add_indicator=True.
If “mean”, then replace missing values using the mean along each column. Can only be used with numeric data.
If “median”, then replace missing values using the median along each column. Can only be used with numeric data.
If “most_frequent”, then replace missing using the most frequent value along each column. Can be used with strings or numeric data. If there is more than one such value, only the smallest is returned.
If “constant”, then replace missing values with fill_value. Can be used with strings or numeric data.
missing_valuesint, float, str, np.nan or None, default=np.nan
The placeholder for the missing values. All occurrences of missing_values
will be imputed. For pandas’ dataframes with nullable integer dtypes with missing values, missing_values
should be set to np.nan
, since pd.NA
will be converted to np.nan
.
strategystring, default=’mean’
The imputation strategy.
New in version 0.20: strategy=”constant” for fixed value imputation.
fill_valuestring or numerical value, default=None
When strategy == “constant”, fill_value is used to replace all occurrences of missing_values. If left to the default, fill_value will be 0 when imputing numerical data and “missing_value” for strings or object data types.
verboseinteger, default=0
Controls the verbosity of the imputer.
copyboolean, default=True
If True, a copy of X will be created. If False, imputation will be done in-place whenever possible. Note that, in the following cases, a new copy will always be made, even if copy=False
:
add_indicatorboolean, default=False
If True, a MissingIndicator
transform will stack onto output of the imputer’s transform. This allows a predictive estimator to account for missingness despite imputation. If a feature has no missing values at fit/train time, the feature won’t appear on the missing indicator even if there are missing values at transform/test time.
Attributes
statistics_array of shape (n_features,)
The imputation fill value for each feature. Computing statistics can result in np.nan
values. During transform
, features corresponding to np.nan
statistics will be discarded.
indicator_MissingIndicator
Indicator used to add binary indicators for missing values. None
if add_indicator is False.
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。