当前位置:   article > 正文

斐波那契数列的两种方法(递归和循环)_斐波那契数列循环

斐波那契数列循环


一、定义

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家莱昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1,F(n)=F(n - 1)+F(n - 2)(n ≥ 3,n ∈ N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从 1963 年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

二、递归实现斐波那契数列

递归实现代码:

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
int fib(int n){
	if (n == 1){
		return 1;
	}
	if (n == 2){
		return 1;
	}
	return fib(n - 1) + fib(n - 2);
}

int main()
{
	int n = 0;
	printf("请输入要求第几个数字:");
	scanf("%d", &n);
	printf("%d\n", fib(n));
	system("pause");
	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

结果:

输入5,输出5。

在这里插入图片描述

输入40,输出102334155。

在这里插入图片描述

输入50,输出-298632863。
这里输出负数的原因是,fib(50)是一个很大的数字,int根本就表示不下来。

在这里插入图片描述

分析:
如果我们自己运行代码尝试,可以知道:
输入5时,计算速度还是很快的,输入40时,计算也只需几秒,而输入50,计算则花费了6-7分钟(和电脑cpu有关)。
所以我们思考一下使用递归实现斐波那契数列是否存在一些问题?


我们以输入5为例子。

在这里插入图片描述可以看出其中fib(3),fib(2),fib(1)被重复计算了很多次。当输入40,50……或者更大的数字时,重复计算的项目和次数也会变得更多,所以我们考虑使用其他的方法来实现斐波那契数列。

三、循环实现斐波那契数列

循环实现代码:

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
int fib(int n){
	if (n == 1){
		return 1;
	}
	if (n == 2){
		return 1;
	}
	int last1 = 1;
	int last2 = 1;
	int cur = 0;
	for (int i = 3; i <= n; i++){
		cur = last1 + last2;
		last2 = last1;
		last1 = cur;
	}
	return cur;
}

int main()
{
	int n = 0;
	printf("请输入要求第几个数字:");
	scanf("%d", &n);
	printf("%d\n", fib(n));
	system("pause");
	return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

结果:

输入5,输出5。

在这里插入图片描述

输入40,输出102334155。

在这里插入图片描述

输入50,输出-298632863。 这里输出负数的原因同样是,fib(50)是一个很大的数字,int根本就表示不下来。

在这里插入图片描述
分析:
当我们用循环来实现斐波那契数列时,代码运行速度变得很快,只需要几秒。

四、 学习递归算法的体会

在我学习函数递归的时候,了解到递归有一个要素:提取重复的逻辑,缩小问题规模。我下意识的认为问题规模缩小了,代码的运行速度也会变快,但实际上不是这样,递归算法的运行需要较多次数的函数调用,如果调用层数比较深,需要增加额外的堆栈处理,比如参数传递需要压栈等操作,会对执行效率有一定影响。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/573262
推荐阅读
相关标签
  

闽ICP备14008679号