赞
踩
文件名:由创建文件的用户决定文件名,主要是为了方便用户找到文件,同一目录下不允许有重名文件。
标识符:一个系统内的各文件标识符唯一,对用户来说毫无可读性,因此标识符只是操作系统用于区分各个文件的一种内部名称。
类型:指明文件的类型
位置:文件存放的路径(让用户使用)、在外存中的地址(操作系统使用,对用户不可见)
大小:指明文件大小
创建时间、上次修改时间、文件所有者信息
保护信息:对文件进行保护的访问
无结构文件(如文本文件)——由一些二进制或字符流组成,又称“流式文件
有结构文件(如数据库表)——由一组相似的记录组成,又称“记录式文件”;记录是一组相关数据项的集合;数据项是文件系统中最基本的数据单位。
用户可以自己创建一层一层的目录,各层目录中存放相应的文件。系统中的各个文件就通过一层一层的目录合理有序的组织起来了
目录其实也是一种特殊的有结构文件(由记录组成),如何实现文件目录是之后会重点探讨的问题
其它需要由操作系统实现的文件管理功能:文件共享(使多个用户可以共享使用一个文件)、文件保护(保证不同的用户对文件有不同的权限)
与内存一样,外存也是由一个个存储单元组成的,每个存储单元可以存储一定量的数据(如 1B)。每个存储单元对应一个物理地址
类似于内存分为一个个“内存块”,外存会分为一个个“块/磁盘块/物理块”。每个磁盘块的大小是相等的,每块一般包含2的整数幂个地址(如本例中,一块包含 2的10次方 个地址,即 1KB)。同样类似的是,文件的逻辑地址也可以分为(逻辑块号,块内地址),操作系统同样需要将逻辑地址转换为外存的物理地址(物理块号,块内地址)的形式。块内地址的位数取决于磁盘块的大小
操作系统以“块”为单位为文件分配存储空间,因此即使一个文件大小只有10B,但它依然需要占用 1KB 的磁盘块。外存中的数据读入内存时同样以块为单位
所谓的“逻辑结构”,就是指在用户看来,文件内部的数据应该是如何组织起来的。而“物理结构”指的是在操作系统看来,文件的数据是如何存放在外存中的
无结构文件:文件内部的数据就是一系列二进制流或字符流组成。又称“流式文件”。如:Windows 操作系统中的 .txt 文件
文件内部的数据其实就是一系列字符流,没有明显的结构特性。
有结构文件:由一组相似的记录组成,又称“记录式文件”。每条记录又若干个数据项组成。如:数据库表文件。一般来说,每条记录有一个数据项可作为关键字(作为识别不同记录的ID)。根据各条记录的长度(占用的存储空间)是否相等,又可分为定长记录和可变长记录两种。
顺序文件:文件中的记录一个接一个地顺序排列(逻辑上),记录可以是定长的或可变长的。各个记录在物理上可以顺序存储或链式存储。
串结构:记录之间的顺序与关键字无关
顺序结构:记录之间的顺序按关键字顺序排列
结论:定长记录的顺序文件,若物理上采用顺序存储,则可实现随机存取;若能再保证记录的顺序结构,则可实现快速检索(即根据关键字快速找到对应记录)
注意:一般来说,考试题目中所说的“顺序文件”指的是物理上顺序存储的顺序文件。之后的讲解中提到的顺序文件也默认如此。可见,顺序文件的缺点是增加/删除一个记录比较困难(如果是串结构则相对简单)
建立一张索引表以加快文件检索速度。每条记录对应一个索引项。
索引表本身是定长记录的顺序文件。因此可以快速找到第 i 个记录对应的索引项。可将关键字作为索引号内容,若按关键字顺序排列,则还可以支持按照关键字折半查找。
每当要增加/删除一个记录时,需要对索引表进行修改。由于索引文件有很快的检索速度,因此主要用于对信息处理的及时性要求比较高的场合。
另外,可以用不同的数据项建立多个索引表。如:学生信息表中,可用关键字“学号”建立一张索引表。也可用“姓名”建立一张索引表。这样就可以根据“姓名”快速地检索文件了。
索引顺序文件是索引文件和顺序文件思想的结合。索引顺序文件中,同样会为文件建立一张索引表,但不同的是:并不是每个记录对应一个索引表项,而是一组记录对应一个索引表项。
目录本身就是一种有结构文件,由一条条记录组成。每条记录对应一个在该放在该目录下的文件。
FCB 的有序集合称为“文件目录”,一个FCB就是一个文件目录项。
FCB 中包含了文件的基本信息(文件名、物理地址、逻辑结构、物理结构等),存取控制信息(是否可读/可写、禁止访问的用户名单等),使用信息(如文件的建立时间、修改时间等)。最重要,最基本的还是文件名、文件存放的物理地址;FCB实现了文件名和文件之间的映射。使用户可以“按名存取”。
搜索:当用户要使用一个文件时,系统要根据文件名搜索目录,找到该文件对应的目录项
创建文件:创建一个新文件时,需要在其所属的目录中增加一个目录项
删除文件:当删除一个文件时,需要在目录中删除相应的目录项
显示目录:用户可以请求显示目录的内容,如显示该目录中的所有文件及相应属性
修改目录:某些文件属性保存在目录中,因此这些属性变化时需要修改相应的目录项(如:文件重命名)
早期操作系统并不支持多级目录,整个系统中只建立一张目录表,每个文件占一个目录项
单级目录实现了“按名存取”,但是不允许文件重名。
在创建一个文件时,需要先检查目录表中有没有重名文件,确定不重名后才能允许建立文件,并将新文件对应的目录项插入目录表中。
显然,单级目录结构不适用于多用户操作系统。
早期的多用户操作系统,采用两级目录结构。分为主文件目录(MFD,Master File Directory)和用户文件目录(UFD,User Flie Directory)
主文件目录记录用户名及相应用户文件目录的存放位置;用户文件目录由该用户的文件PCB组成。
两级目录结构允许不同用户的文件重名,也可以在目录上实现实现访问限制(检查此时登录的用户名是否匹配)。但是两级目录结构依然缺乏灵活性,用户不能对自己的文件进行分类。
用户(或用户进程)要访问某个文件时要用文件路径名标识文件,文件路径名是个字符串。各级目录之间用“/”隔开。从根目录出发的路径称为绝对路径。
很多时候,用户会连续访问同一目录内的多个文件。显然,每次都从根目录开始查找,是很低效的。因此可以设置一个“当前目录
树形目录结构可以很方便地对文件进行分类,层次结构清晰,也能够更有效地进行文件的管理和保护。但是,树形结构不便于实现文件的共享。为此,提出了“无环图目录结构”。
在树形目录结构的基础上,增加一些指向同一节点的有向边,使整个目录成为一个有向无环图。可以更方便地实现多个用户间的文件共享。
可以用不同的文件名指向同一个文件,甚至可以指向同一个目录(共享同一目录下的所有内容)。
需要为每个共享结点设置一个共享计数器,用于记录此时有多少个地方在共享该结点。用户提出删除结点的请求时,只是删除该用户的FCB、并使共享计数器减1,并不会直接删除共享结点。只有共享计数器减为0时,才删除结点。
注意:共享文件不同于复制文件。在共享文件中,由于各用户指向的是同一个文件,因此只要其中一个用户修改了文件数据,那么所有用户都可以看到文件数据的变化
其实在查找各级目录的过程中只需要用到“文件名”这个信息,只有文件名匹配时,才需要读出文件的其他信息。因此可以考虑让目录表“瘦身”来提升效率。
当找到文件名对应的目录项时,才需要将索引结点调入内存,索引结点中记录了文件的各种信息,包括文件在外存中的存放位置,根据“存放位置”即可找到文件。存放在外存中的索引结点称为“磁盘索引结点”,当索引结点放入内存后称为“内存索引结点”。相比之下内存索引结点中需要增加一些信息,比如:文件是否被修改、此时有几个进程正在访问该文件等
类似于内存分页,磁盘中的存储单元也会被分为一个个“块/磁盘块/物理块”。很多操作系统中,磁盘块的大小与内存块、页面的大小相同
内存与磁盘之间的数据交换(即读/写操作、磁盘I/O)都是以“块”为单位进行的。即每次读入一块,或每次写出一块。
在内存管理中,进程的逻辑地址空间被分为一个一个页面;同样的,在外存管理中,为了方便对文件数据的管理,文件的逻辑地址空间也被分为了一个一个的文件“块”。于是文件的逻辑地址也可以表示为**(逻辑块号,块内地址**)的形式
操作系统为文件分配存储空间都是以块为单位的;用户通过逻辑地址来操作自己的文件,操作系统要负责实现从逻辑地址到物理地址的映射。
连续分配方式要求每个文件在磁盘上占有一组连续的块
文件目录中记录存放的起始块号和长度(占用的块数),用户给出要访问的逻辑块号,操作系统找到该文件对应的目录项(FCB),得到物理块号=起始块号+逻辑块号(记得检查用户提供的逻辑块号是否合法);可以直接计算出逻辑块号对应的物理块号**,因此连续分配支持顺序访问和直接访问(随机访问)**
读取某个磁盘块时,需要移动磁头。访问的两个磁盘块相隔越远,移动磁头所需时间就越长。
结论:连续分配的文件在顺序读/写时速度最快
总结:
优点:支持顺序访问和直接访问(即随机访问);连续分配的文件在顺序访问时速度最快
缺点:不方便文件拓展;存储空间利用率低,会产生磁盘碎片
链接分配采取离散分配的方式,可以为文件分配离散的磁盘块。分为隐式链接和显式链接两种
目录中记录了文件存放的起始块号和结束块号。当然,也可以增加一个字段来表示文件的长度
除了文件的最后一个磁盘块之外,每个磁盘块中都会保存指向下一个盘块的指针,这些指针对用户是透明的。
结论:
优点:很方便文件拓展,不会有碎片问题,外存利用率高。
缺点:只支持顺序访问,不支持随机访问,查找效率低,指向下一个盘块的指针也需要耗费少量的存储空间
把用于链接文件各物理块的指针显式地存放在一张表中。即文件分配表(FAT,File Allocation Table)
目录中只记录文件的起始块号
注意**:一个磁盘仅设置一张FAT**。开机时,将FAT读入内存,并常驻内存。 FAT 的各个表项在物理上连续存储,且每一个表项长度相同,因此“物理块号”字段可以是隐含的。
从目录项中找到起始块号,若i>0,则查询内存中的文件分配表FAT,往后找到 i 号逻辑块对应的物理块号。逻辑块号转换成物理块号的过程不需要读磁盘操作。
结论:采用链式分配(显式链接)方式的文件,支持顺序访问,也支持随机访问(想访问 i 号逻辑块时,并不需要依次访问之前的 0 ~ i-1号逻辑块),由于块号转换的过程不需要访问磁盘,因此相比于隐式链接来说,访问速度快很多。
显然,显式链接也不会产生外部碎片,也可以很方便地对文件进行拓展。
优点:很方便文件拓展,不会有碎片问题,外存利用率高,并且支持随机访问。相比于隐式链接来说,地址转换时不需要访问磁盘,因此文件的访问效率更高。
缺点:文件分配表的需要占用一定的存储空间
索引分配允许文件离散地分配在各个磁盘块中,系统会为每个文件建立一张索引表,索引表中记录了文件的各个逻辑块对应的物理块(索引表的功能类似于内存管理中的页表——建立逻辑页面到物理页之间的映射关系)。索引表存放的磁盘块称为索引块。文件数据存放的磁盘块称为数据块。
注意:
文件的逻辑块号到物理块号的转换方法:
用户给出要访问的逻辑块号i,操作系统找到该文件对应的目录项(FCB),从目录项中可知索引表存放的位置,将索引表从外存读入到内存,并查找索引表即可知i号逻辑块在外存存放的位置。
可见,索引分配方式可以支持随机访问。
文件拓展也很容易实现(只需要给文件分配一个空闲块,并增加一个索引表项即可)但是索引表需要占用一定的存储空间
如果一个文件太大,一个磁盘块放不下文件的整张索引表,解决方案:
考点:
空闲盘块表中记录了第一个空闲盘块号和空闲盘快数(连续的)
如何分配磁盘块:与内存管理中的动态分区分配很类似,为一个文件分配连续的存储空间。同样可采用首次适应、最佳适应、最坏适应等算法来决定要为文件分配哪个区间
如何回收磁盘块:与内存管理中的动态分区分配很类似,当回收某个存储区时需要有四种情况——①回收区的前后都没有相邻空闲区;②回收区的前后都是空闲区;③回收区前面是空闲区;④回收区后面是空闲区。总之,回收时需要注意表项的合并问题
空闲盘块链:以盘块为单位组成一条空闲链
空闲盘区链:以盘区为单位组成一条空闲链(连续的空闲盘块组成一个空闲盘区)
操作系统保存着链头、链尾指针
如何分配:若某文件申请 K 个盘块,则可以采用首次适应、最佳适应等算法,从链头开始检索,按照算法规则找到一个大小符合要求的空闲盘区,分配给文件。若没有合适的连续空闲块,也可以将不同盘区的盘块同时分配给一个文件,注意分配后可能要修改相应的链指针、盘区大小等数据
如何回收:若回收区和某个空闲盘区相邻,则需要将回收区合并到空闲盘区中。若回收区没有和任何空闲区相邻,将回收区作为单独的一个空闲盘区挂到链尾
离散分配、连续分配都适用,为一个文件分配多个盘块时效率更高
位示图:每个二进制位对应一个盘块。在本例中,“0”代表盘块空闲,“1”代表盘块已分配。位示图一般用连续的“字”来表示,如本例中一个字的字长是16位,字中的每一位对应一个盘块。因此可以用(字号,位号)对应一个盘块号。当然有的题目中也描述为(行号,列号)
重要重要重要:要能自己推出盘块号与(字号位号)相互转换的公式。
注意题目条件:盘块号、字号、位号到底是从0开始还是从1开始
从0开始:(字号, 位号)=(i, j) 的二进制位对应的 盘块号 b = ni + j
如何分配:若文件需要K个块,①顺序扫描位示图,找到K个相邻或不相邻的“0”;②根据字号、位号算出对应的盘块号,将相应盘块分配给文件;③将相应位设置为“1”。
如何回收:①根据回收的盘块号计算出对应的字号、位号;②将相应二进制位设为“0”
空闲表法、空闲链表法不适用于大型文件系统,因为空闲表或空闲链表可能过大。UNIX系统中采用了成组链接法对磁盘空闲块进行管理。
文件卷的目录区中专门用一个磁盘块作为“超级块”,当系统启动时需要将超级块读入内存。并且要保证内存与外存中的“超级块”数据一致
如何分配?
Eg :需要1个空闲块
①检查第一个分组的块数是否足够。1<100,因此是足够的。
②分配第一个分组中的1个空闲块,并修改相应数据
如何回收?
Eg :假设每个分组最多为100个空闲块,此时第一个分组已有100个块,还要再回收一块。需要将超级块中的数据复制到新回收的块中,并修改超级块的内容,让新回收的块成为第一个分组。
进行 Create 系统调用时,需要提供的几个主要参数:
操作系统在处理 Create 系统调用时,主要做了两件事:
进行 Delete 系统调用时,需要提供的几个主要参数:
操作系统在处理 Delete 系统调用时,主要做了几件事:
在很多操作系统中,在对文件进行操作之前,要求用户先使用 open 系统调用“打开文件”,需要提供的几个主要参数:
操作系统在处理 open 系统调用时,主要做了几件事:
打开文件表有用户的,还有系统的(系统的打开文件表整个系统只有一张)
**
打开计数器记录此时有多少个进程打开了此文件。**
进程使用完文件后,要“关闭文件”
操作系统在处理 Close 系统调用时,主要做了几件事:
进程使用 read系统调用完成写操作。需要指明是哪个文件(在支持“打开文件”操作的系统中,只需要提供文件在打开文件表中的索引号即可),还需要指明要读入多少数据(如:读入 1KB)、指明读入的数据要放在内存中的什么位置。
操作系统在处理 read 系统调用时,会从读指针指向的外存中,将用户指定大小的数据读入用户指定的内存区域中。
进程使用 write 系统调用完成写操作,需要指明是哪个文件(在支持“打开文件”操作的系统中,只需要提供文件在打开文件表中的索引号即可),还需要指明要写出多少数据(如:写出 1KB)、写回外存的数据放在内存中的什么位置
操作系统在处理 write 系统调用时,会从用户指定的内存区域中,将指定大小的数据写回写指针指向的外存。
共享与复制的区别:
多个用户共享同一个文件,意味着系统中只有“一份”文件数据。并且只要某个用户修改了该文件的数据,其他用户也可以看到文件数据的变化
如果是多个用户都“复制”了同一个文件,那么系统中会有“好几份”文件数据。其中一个用户修改了自己的那份文件数据,对其他用户的文件数据并没有影响
知识回顾:索引结点,是一种文件目录瘦身策略。由于检索文件时只需用到文件名,因此可以将除了文件名之外的其他信息放到索引结点中。这样目录项就只需要包含文件名、索引结点指针。
索引结点中设置一个链接计数变量 count,用于表示链接到本索引结点上的用户目录项数。
若 count = 2,说明此时有两个用户目录项链接到该索引结点上,或者说是有两个用户在共享此文件。
若某个用户决定“删除”该文件,则只是要把用户目录中与该文件对应的目录项删除,且索引结点的count值减 1。若 count>0,说明还有别的用户要使用该文件,暂时不能把文件数据删除,否则会导致指针悬空。当 count = 0 时系统负责删除文件
软连接就相当于我们熟悉的快捷方式。操作系统判断某文件是link类型文件,于是会根据其中记录的路径层层查找目录。
为文件设置一个“口令”(如:abc112233),用户请求访问该文件时必须提供“口令“。
口令一般存放在文件对应的 FCB 或索引结点中。用户访问文件前需要先输入“口令”,操作系统会将用户提供的口令与FCB中存储的口令进行对比,如果正确,则允许该用户访问文件
优点:保存口令的空间开销不多,验证口令的时间开销也很小。
缺点:正确的“口令”存放在系统内部,不够安全
使用某个“密码”对文件进行加密,在访问文件时需要提供正确的“密码”才能对文件进行正确的解密(密码是用户记忆,不再系统保存)
优点:保密性强,不需要在系统中存储“密码”
缺点:编码/译码,或者说加密/解密要花费一定时间。
在每个文件的FCB(或索引结点)中增加一个访问控制列表(Access-Control List, ACL),该表中记录了各个用户可以对该文件执行哪些操作
实现灵活,可以实现复杂的文件保护功能。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。