当前位置:   article > 正文

【paper】基于分布式采样的多机器人编队导航信念传播模型预测控制

【paper】基于分布式采样的多机器人编队导航信念传播模型预测控制
  • Distributed Sampling-Based Model Predictive Control via Belief Propagation for Multi-Robot Formation Navigation
  • RAL 2024.4
  • Chao Jiang 美国 University of Wyoming

预备知识

马尔可夫随机场(Markov Random Field, MRF)

马尔可夫随机场(MRF)是用于建模多个随机变量之间相互依赖关系的概率图模型。具有以下特点:

  1. MRF通过无向图表示,节点代表随机变量,边表示变量之间的相互依赖关系。
  2. 每个节点的条件分布仅依赖于其邻居节点,而不依赖于其他节点。
  3. 其核心思想是通过局部相互作用来捕捉全局行为。

信念传播(Belief Propagation, BP)

信念传播是一种在图模型(如MRF)上进行推断的算法。它可以用于计算边缘概率分布或最大后验概率估计。主要有两种形式:

  • 标准(BP):适用于树结构或无环图。在这些图中,BP可以精确地计算边缘概率分布。
  • 循环(Loopy BP):适用于包含环的图。虽然在有环的图中BP不一定收敛或给出精确解,但在实践中它常常表现良好,能提供近似解。

步骤:

  1. 初始化:将每个节点的初始信念设置为其先验概率。
  2. 节点之间交换消息,包括关于一个节点的信念如何影响另一个节点。
  3. 边缘概率计算:通过聚合消息计算每个节点的边缘概率。

Q1 Background:本文试图解决一个什么样的问题?

  • 具有复杂系统动力学和不确定性模型的随机最优控制问题
  • 多机器人最优轨迹优化问题
    在这里插入图片描述
    声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/615249
推荐阅读