当前位置:   article > 正文

Pyspark 读 DataFrame 的使用与基本操作_pyspark dataframe

pyspark dataframe

一、安装

基于 mac 操作系统

  1. 安装 jdk
    jdk 下载地址
    在这里插入图片描述
  2. 安装 pyspark
pip install pyspark
  • 1

二、读取 HDFS 文件

  1. 读 json
    注意,如果是多行的 json,需要用 “multiLine” 模式,否则会报错
data_path = "./test_file.json"  # 本地
# data_path = "hdfs://..."
df = spark.read.json(data_path)
df = spark.read.option("multiLine", True).option("mode", "PERMISSIVE").json(data_path)
  • 1
  • 2
  • 3
  • 4
  1. 读 parquet
data_path = "hdfs://..."  
df = spark.read.parquet(data_path)
  • 1
  • 2

三、基本操作

2.1 建立SparkSession对象

一切操作之前需要先建立一个SparkSession对象(运行Spark code的Entrance point,可以理解为交互部件):
详见: pyspark.sql module

from pyspark.sql import SparkSession

spark = SparkSession.builder.master("local").appName("Word Count").config("spark.some.config.option", "some-value").getOrCreate()
# spark = SparkSession.builder.appName('mu').master('local').getOrCreate()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 如果遇到如下报错
Traceback (most recent call last):
  File "/Users/my_name/caogao/code_test_1/code_test_pyspark.py", line 5, in <module>
    spark = SparkSession.builder.master("local").getOrCreate()
  File "/Users/my_name/opt/anaconda3/envs/py3.7/lib/python3.7/site-packages/pyspark/sql/session.py", line 186, in getOrCreate
    sc = SparkContext.getOrCreate(sparkConf)
  File "/Users/my_name/opt/anaconda3/envs/py3.7/lib/python3.7/site-packages/pyspark/context.py", line 376, in getOrCreate
    SparkContext(conf=conf or SparkConf())
  File "/Users/my_name/opt/anaconda3/envs/py3.7/lib/python3.7/site-packages/pyspark/context.py", line 136, in __init__
    conf, jsc, profiler_cls)
  File "/Users/my_name/opt/anaconda3/envs/py3.7/lib/python3.7/site-packages/pyspark/context.py", line 198, in _do_init
    self._jsc = jsc or self._initialize_context(self._conf._jconf)
  File "/Users/my_name/opt/anaconda3/envs/py3.7/lib/python3.7/site-packages/pyspark/context.py", line 315, in _initialize_context
    return self._jvm.JavaSparkContext(jconf)
  File "/Users/my_name/opt/anaconda3/envs/py3.7/lib/python3.7/site-packages/py4j/java_gateway.py", line 1569, in __call__
    answer, self._gateway_client, None, self._fqn)
  File "/Users/my_name/opt/anaconda3/envs/py3.7/lib/python3.7/site-packages/py4j/protocol.py", line 328, in get_return_value
    format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling None.org.apache.spark.api.java.JavaSparkContext.
: java.net.BindException: Can't assign requested address: Service 'sparkDriver' failed after 16 retries (on a random free port)! Consider explicitly setting the appropriate binding address for the service 'sparkDriver' (for example spark.driver.bindAddress for SparkDriver) to the correct binding address.

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

则在开头添加代码

import pyspark
conf = pyspark.SparkConf().set('spark.driver.host','127.0.0.1')
sc = pyspark.SparkContext(master='local', appName='myAppName',conf=conf)
  • 1
  • 2
  • 3

参考:解决方案

2.2 创建模拟数据表

test = []
test.append((1, 'age', '30', 50, 40))
test.append((1, 'city', 'beijing', 50, 40))
test.append((1, 'gender', 'fale', 50, 40))
test.append((1, 'height', '172cm', 50, 40))
test.append((1, 'weight', '70kg', 50, 40))
test.append((2, 'age', '26', 100, 80))
test.append((2, 'city', 'beijing', 100, 80))
test.append((2, 'gender', 'fale', 100, 80))
test.append((2, 'height', '170cm', 100, 80))
test.append((2, 'weight', '65kg', 100, 80))
test.append((3, 'age', '35', 99, 99))
test.append((3, 'city', 'nanjing', 99, 99))
test.append((3, 'gender', 'female', 99, 99))
test.append((3, 'height', '161cm', 99, 99))
test.append((3, 'weight', '50kg', 99, 99))
df = spark.createDataFrame(test,
						  ['user_id', 'attr_name','attr_value', 'income', 'expenses'])

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

或者直接

df = spark.createDataFrame([('1', 'Joe', '70000', '1'), ('2', 'Henry', '80000', None)],
                           ['Id', 'Name', 'Sallary', 'DepartmentId'])
  • 1
  • 2

2.3 查

2.3.1 行元素查询操作

1. 打印数据

df.show()默认打印前20条数据,当然可以指定具体打印多少条数据。

如果有些属性值特别长,pyspark会截断数据导致打不全,这时候可以使用. df.show(truncate=False)

>>> df.show()
+-------+---------+----------+------+--------+
|user_id|attr_name|attr_value|income|expenses|
+-------+---------+----------+------+--------+
|      1|      age|        30|    50|      40|
|      1|     city|   beijing|    50|      40|
|      1|   gender|      fale|    50|      40|
|      1|   height|     172cm|    50|      40|
|      1|   weight|      70kg|    50|      40|
|      2|      age|        26|   100|      80|
|      2|     city|   beijing|   100|      80|
|      2|   gender|      fale|   100|      80|
|      2|   height|     170cm|   100|      80|
|      2|   weight|      65kg|   100|      80|
|      3|      age|        35|    99|      99|
|      3|     city|   nanjing|    99|      99|
|      3|   gender|    female|    99|      99|
|      3|   height|     161cm|    99|      99|
|      3|   weight|      50kg|    99|      99|
+-------+---------+----------+------+--------+
 
>>> df.show(3)
+-------+---------+----------+------+--------+
|user_id|attr_name|attr_value|income|expenses|
+-------+---------+----------+------+--------+
|      1|      age|        30|    50|      40|
|      1|     city|   beijing|    50|      40|
|      1|   gender|      fale|    50|      40|
+-------+---------+----------+------+--------+
only showing top 3 rows
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

2. 打印概要

>>> df.printSchema()
root
 |-- user_id: long (nullable = true)
 |-- attr_name: string (nullable = true)
 |-- attr_value: string (nullable = true)
 |-- income: long (nullable = true)
 |-- expenses: long (nullable = true)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

3. 查询总行数

>>> df.count()
15
  • 1
  • 2

4. 获取头几行到本地

>>> list = df.head(3) 
>>> df.head(3)
[Row(user_id=1, attr_name=u'age', attr_value=u'30', income=50, expenses=40), Row(user_id=1, attr_name=u'city', attr_value=u'beijing', income=50, expenses=40), Row(user_id=1, attr_name=u'gender', attr_value=u'fale', income=50, expenses=40)]
>>> df.take(5)
[Row(user_id=1, attr_name=u'age', attr_value=u'30', income=50, expenses=40), Row(user_id=1, attr_name=u'city', attr_value=u'beijing', income=50, expenses=40), Row(user_id=1, attr_name=u'gender', attr_value=u'fale', income=50, expenses=40), Row(user_id=1, attr_name=u'height', attr_value=u'172cm', income=50, expenses=40), Row(user_id=1, attr_name=u'weight', attr_value=u'70kg', income=50, expenses=40)]
  • 1
  • 2
  • 3
  • 4
  • 5

5. 查询某列为null的行

>>> from pyspark.sql.functions import isnull
>>> df = df.filter(isnull("income"))
>>> df.show()
19/02/22 17:05:51 WARN DFSClient: Slow ReadProcessor read fields took 87487ms (threshold=30000ms); ack: seqno: 198 reply: SUCCESS reply: SUCCESS reply: SUCCESS downstreamAckTimeNanos: 17565965 flag: 0 flag: 0 flag: 0, targets: [DatanodeInfoWithStorage[172.21.3.38:50010,DS-82aedc87-a850-40aa-9d04-dc62ab0988ef,DISK], DatanodeInfoWithStorage[172.21.80.165:50010,DS-305daec5-3c77-48cd-bee2-4f839aea8bb4,DISK], DatanodeInfoWithStorage[172.21.151.40:50010,DS-29ba84d5-ad7d-407f-9484-d85aa3f0a736,DISK]]
+-------+---------+----------+------+--------+
|user_id|attr_name|attr_value|income|expenses|
+-------+---------+----------+------+--------+
+-------+---------+----------+------+--------+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

6. 输出list类型,list中每个元素是Row类:

>>> df.collect()
[Row(user_id=1, attr_name=u'age', attr_value=u'30', income=50, expenses=40), Row(user_id=1, attr_name=u'city', attr_value=u'beijing', income=50, expenses=40), Row(user_id=1, attr_name=u'gender', attr_value=u'fale', income=50, expenses=40), Row(user_id=1, attr_name=u'height', attr_value=u'172cm', income=50, expenses=40), Row(user_id=1, attr_name=u'weight', attr_value=u'70kg', income=50, expenses=40), Row(user_id=2, attr_name=u'age', attr_value=u'26', income=100, expenses=80), Row(user_id=2, attr_name=u'city', attr_value=u'beijing', income=100, expenses=80), Row(user_id=2, attr_name=u'gender', attr_value=u'fale', income=100, expenses=80), Row(user_id=2, attr_name=u'height', attr_value=u'170cm', income=100, expenses=80), Row(user_id=2, attr_name=u'weight', attr_value=u'65kg', income=100, expenses=80), Row(user_id=3, attr_name=u'age', attr_value=u'35', income=99, expenses=99), Row(user_id=3, attr_name=u'city', attr_value=u'nanjing', income=99, expenses=99), Row(user_id=3, attr_name=u'gender', attr_value=u'female', income=99, expenses=99), Row(user_id=3, attr_name=u'height', attr_value=u'161cm', income=99, expenses=99), Row(user_id=3, attr_name=u'weight', attr_value=u'50kg', income=99, expenses=99)]
  • 1
  • 2

注:此方法将所有数据全部导入到本地,返回一个Array对象。当然,我们可以取出Array中的值,是一个Row,我们也可以取出Row中的值。

>>> list = df.collect()
>>> 19/02/22 16:54:04 WARN DFSClient: Slow ReadProcessor read fields took 43005ms (threshold=30000ms); ack: seqno: 179 reply: SUCCESS reply: SUCCESS reply: SUCCESS downstreamAckTimeNanos: 18446744073455908425 flag: 0 flag: 0 flag: 0, targets: [DatanodeInfoWithStorage[172.21.3.38:50010,DS-82aedc87-a850-40aa-9d04-dc62ab0988ef,DISK], DatanodeInfoWithStorage[172.21.80.165:50010,DS-305daec5-3c77-48cd-bee2-4f839aea8bb4,DISK], DatanodeInfoWithStorage[172.21.151.40:50010,DS-29ba84d5-ad7d-407f-9484-d85aa3f0a736,DISK]]
 
>>> list[0]
Row(user_id=1, attr_name=u'age', attr_value=u'30', income=50, expenses=40)
>>> list[0][1]
u'age'
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

7. 查询概况

>>> df.describe().show()
19/02/22 16:58:23 WARN DFSClient: Slow ReadProcessor read fields took 78649ms (threshold=30000ms); ack: seqno: 188 reply: SUCCESS reply: SUCCESS reply: SUCCESS downstreamAckTimeNanos: 187817284 flag: 0 flag: 0 flag: 0, targets: [DatanodeInfoWithStorage[172.21.3.38:50010,DS-82aedc87-a850-40aa-9d04-dc62ab0988ef,DISK], DatanodeInfoWithStorage[172.21.80.165:50010,DS-305daec5-3c77-48cd-bee2-4f839aea8bb4,DISK], DatanodeInfoWithStorage[172.21.151.40:50010,DS-29ba84d5-ad7d-407f-9484-d85aa3f0a736,DISK]]
+-------+------------------+---------+------------------+-----------------+------------------+
|summary|           user_id|attr_name|        attr_value|           income|          expenses|
+-------+------------------+---------+------------------+-----------------+------------------+
|  count|                15|       15|                15|               15|                15|
|   mean|               2.0|     null|30.333333333333332|             83.0|              73.0|
| stddev|0.8451542547285166|     null| 4.509249752822894|24.15722311383137|25.453037988757707|
|    min|                 1|      age|             161cm|               50|                40|
|    max|                 3|   weight|           nanjing|              100|                99|
+-------+------------------+---------+------------------+-----------------+------------------+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

8. 去重set操作

  • distinct() 无法传参
>>> df.distinct().show()
+-------+                                                                       
|user_id|
+-------+
|      1|
|      3|
|      2|
+-------+

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 去重并计数
df.groupBy("col1").agg(F.countDistinct("col2")).orderBy("col1", ascending=False).show()

# 和下面分多次统计,效果相同
df1 = req_df.filter("col1=1").select("col2").dropDuplicates(subset=["col2"])
df1.count()
...
...
dfn = req_df.filter("col1=n").select("col2").dropDuplicates(subset=["col2"])
dfn.count()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 如果要传参,选择需要去重的列,采用dropDuplicates()
A = [("A", 1, "AAA", "AAAAA"), ("A", 2, "AAA", "AAAAA")]
df = spark.createDataFrame(A,['name','id', "name1", "name2"])
df.show()
+----+---+-----+-----+
|name| id|name1|name2|
+----+---+-----+-----+
|   A|  1|  AAA|AAAAA|
|   A|  2|  AAA|AAAAA|
+----+---+-----+-----+

# 直接 df.dropDuplicates() 只有当整行相同时才能去重
df.dropDuplicates().show()
+----+---+-----+-----+
|name| id|name1|name2|
+----+---+-----+-----+
|   A|  2|  AAA|AAAAA|
|   A|  1|  AAA|AAAAA|
+----+---+-----+-----+

# 针对某些列去重1
df.dropDuplicates(subset=["name", "name1", "name2"]).show()
+----+---+-----+-----+
|name| id|name1|name2|
+----+---+-----+-----+
|   A|  1|  AAA|AAAAA|
+----+---+-----+-----+

# 针对某些列去重2
df.dropDuplicates(subset=[c for c in df.columns if c != "id"]).show()
+----+---+-----+-----+
|name| id|name1|name2|
+----+---+-----+-----+
|   A|  1|  AAA|AAAAA|
+----+---+-----+-----+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
2.3.2 列元素操作

1. 选择一列或多列:select
一般来说,selectselectExpr 是一样的,区别可以看 Spark—DataFrame学习(二)——select、selectExpr函数

df.select("age").show()
  • 1
df["age"]
df.age
df.select(“name”)
df.select(df[‘name’], df[‘age’]+1)
df.select(df.a, df.b, df.c)    # 选择a、b、c三列
df.select(df["a"], df["b"], df["c"])    # 选择a、b、c三列
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

2. where按条件选择filter 和 where 是一样的
语法:where(conditionExpr: String)
传入筛选条件表达式,可以用andor。得到DataFrame类型的返回结果
注意:字符串 b 需要加引号

>>> df.where("id = 1 or c1 = 'b'" ).show()                     
+-------+---------+----------+------+--------+
| id    |attr_name|attr_value|income|   c1   |
+-------+---------+----------+------+--------+
|      1|      age|        30|    50|      c|
|      2|     city|   beijing|    50|      b|
|      2|   gender|      fale|    50|      b|
|      3|   height|     172cm|    50|      b|
|      4|   weight|      70kg|    50|      b|
+-------+---------+----------+------+--------+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

3. filter 根据字段选择filter 和 where 是一样的

注意:filter 有好几种用法,推荐第一种

  • 第一种
df.filter("id = 1 or c1 = 'b'" ).show()
  • 1
  • 第二种
df.filter((df.id =="1") & (df.c1=="b"))
df.filter((df.id =="1") | (df.c1=="b"))
  • 1
  • 2
  • 第三种
df.filter('id=="1"').filter('c1=="b"')
  • 1
  • 第四种
df.filter("id == 1 or c1 == 'b'")
  • 1
  • 对于 bool 型字段
A = [('Pirate',True),('Monkey',False), ('Ninja',True),('Dodo',False), ('Spa',False)]
df = spark.createDataFrame(A,['name','is_boy'])

df.show()
+------+------+
|  name|is_boy|
+------+------+
|Pirate|  true|
|Monkey| false|
| Ninja|  true|
|  Dodo| false|
|   Spa| false|
+------+------+

# 大写 True 可以
df.filter("is_boy=True").show()
+------+------+
|  name|is_boy|
+------+------+
|Pirate|  true|
| Ninja|  true|
+------+------+

# 小写 true 也可以
df.filter("is_boy=true").show()
+------+------+
|  name|is_boy|
+------+------+
|Pirate|  true|
| Ninja|  true|
+------+------+

# 下面这种写法也可以(默认=True)
df.filter("is_boy").show()
+------+------+
|  name|is_boy|
+------+------+
|Pirate|  true|
| Ninja|  true|
+------+------+

df.filter("is_boy=False").show()
+------+------+
|  name|is_boy|
+------+------+
|Monkey| false|
|  Dodo| false|
|   Spa| false|
+------+------+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 对于 Null 类型

可以有2种用法

import pyspark.sql.functions as F
df_.show()
+----+-----+
|name|value|
+----+-----+
|   a| null|
|   b|    2|
|   c| null|
+----+-----+

df_.filter("value is null").show()
df_.filter(F.col("value").isNull()).show()
+----+-----+
|name|value|
+----+-----+
|   a| null|
|   c| null|
+----+-----+

df_.filter("value is not null").show()
df_.filter(F.col("value").isNotNull()).show()
+----+-----+
|name|value|
+----+-----+
|   b|    2|
+----+-----+

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 对于空字符串(非 null)
df_.show()
+----+-----+
|name|value|
+----+-----+
|   a|     |
|   b|    2|
|   c|     |
+----+-----+

df_.filter("value=''").show()  # 空字符串
+----+-----+
|name|value|
+----+-----+
|   a|     |
|   c|     |
+----+-----+

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
2.3.3 排序

1. orderBy:按指定字段排序,默认为升序

>>> df.orderBy(df.income.desc()).show()         
19/02/22 18:02:31 WARN DFSClient: Slow ReadProcessor read fields took 87360ms (threshold=30000ms); ack: seqno: 325 reply: SUCCESS reply: SUCCESS reply: SUCCESS downstreamAckTimeNanos: 14139744 flag: 0 flag: 0 flag: 0, targets: [DatanodeInfoWithStorage[172.21.3.38:50010,DS-82aedc87-a850-40aa-9d04-dc62ab0988ef,DISK], DatanodeInfoWithStorage[172.21.80.165:50010,DS-305daec5-3c77-48cd-bee2-4f839aea8bb4,DISK], DatanodeInfoWithStorage[172.21.151.40:50010,DS-29ba84d5-ad7d-407f-9484-d85aa3f0a736,DISK]]
+-------+---------+----------+------+--------+
|user_id|attr_name|attr_value|income|expenses|
+-------+---------+----------+------+--------+
|      2|   gender|      fale|   100|      80|
|      2|   weight|      65kg|   100|      80|
|      2|   height|     170cm|   100|      80|
|      2|      age|        26|   100|      80|
|      2|     city|   beijing|   100|      80|
|      3|   gender|    female|    99|      99|
|      3|      age|        35|    99|      99|
|      3|   height|     161cm|    99|      99|
|      3|   weight|      50kg|    99|      99|
|      3|     city|   nanjing|    99|      99|
|      1|      age|        30|    50|      40|
|      1|   height|     172cm|    50|      40|
|      1|     city|   beijing|    50|      40|
|      1|   weight|      70kg|    50|      40|
|      1|   gender|      fale|    50|      40|
+-------+---------+----------+------+--------+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
2.3.4 抽样

sample是抽样函数,其中withReplacement = True or False代表是否有放回。42是seed。

t1 = train.sample(False, 0.2, 42)
  • 1

2.4 增加、删除、修改列

  1. 增加列用 withColumn 方法
    增加一列value全为0的列
from pyspark.sql.functions import lit
df.withColumn('newCol', lit(0)).show()
## 输出
+---+-----+-------+------------+------+
| Id| Name|Sallary|DepartmentId|newCol|
+---+-----+-------+------------+------+
|  1|  Joe|  70000|           1|     0|
|  2|Henry|  80000|        null|     0|
+---+-----+-------+------------+------+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  1. 重命名列名 pyspark系列–dataframe基础
# spark-1
# 在创建dataframe的时候重命名
data = spark.createDataFrame(data=[("Alberto", 2), ("Dakota", 2)],
                              schema=['name','length'])
data.show()
data.printSchema()

# spark-2
# 使用selectExpr方法
# 原始column as 修改之后的column
# cast 是修改整列的属性
color_df2 = color_df.selectExpr('cast(color as long) as color2','length as length2')
color_df2.show()

# spark-3
# withColumnRenamed方法
color_df2 = color_df.withColumnRenamed('color','color2')\
                    .withColumnRenamed('length','length2')
color_df2.show()

# spark-4
# alias 方法
color_df.select(color_df.color.alias('color2')).show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

2.5 groupBy 分组统计

In [63]: df.groupby('Sallary').count().show()
+-------------+-----+                                                           
|app_category2|count|
+-------------+-----+
|         null|  231|
|           77|  215|
|           81|  378|
|           84|   14|
+-------------+-----+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

注意!正确参数是 ascending,如果误拼写成 ascending,不会报错,但是不能正确排序,要注意!!!

  • 从小到大排序:ascending=True
  • 从大到小排序:ascending=False
valuesA = [('Pirate','boy',1),('Monkey','girl',2),('Monkey','boy',3),('Ninja','girl',3),('Spa','boy',4), ('Spa','boy',5), ('Spa','girl',7)]
df = spark.createDataFrame(valuesA,['name','sex','value'])

In [8]: df.show()
+------+----+-----+
|  name| sex|value|
+------+----+-----+
|Pirate| boy|    1|
|Monkey|girl|    2|
|Monkey| boy|    3|
| Ninja|girl|    3|
|   Spa| boy|    4|
|   Spa| boy|    5|
|   Spa|girl|    7|
+------+----+-----+

# 从大到小排序
df.groupBy("name", "sex").count().orderBy("count", ascending=False).show()

+------+----+-----+
|  name| sex|count|
+------+----+-----+
|   Spa| boy|    2|
|Monkey| boy|    1|
|   Spa|girl|    1|
|Monkey|girl|    1|
|Pirate| boy|    1|
| Ninja|girl|    1|
+------+----+-----+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • collect_set 和 collect_list
from pyspark.sql import functions as F
df.show()
+---+-----+----+
| id|value|name|
+---+-----+----+
|  a| null| Leo|
|  a|   11|null|
|  a|   11|Mike|
|  a|   22| Leo|
+---+-----+----+

# collect_list 汇总到列表中;collect_set 汇总到列表中,再去重
df.groupBy("id").agg(F.sum("value").alias("value_sum"), F.collect_set("value").alias("value_collect_set"), F.collect_list("name").alias("name_collect_list")).show()
+---+---------+-----------------+-----------------+
| id|value_sum|value_collect_set|name_collect_list|
+---+---------+-----------------+-----------------+
|  a|       44|         [22, 11]| [Leo, Mike, Leo]|
+---+---------+-----------------+-----------------+


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 拆分列表为多行(collect_list 反向操作)
df_.show()
+----+--------------------+
|name|             ad_list|
+----+--------------------+
|   a|              [1, 2]|
|   b|[11, 22, 33, 44, 55]|
+----+--------------------+

df_.withColumn("new", F.explode("ad_list")).show()
+----+--------------------+---+
|name|             ad_list|new|
+----+--------------------+---+
|   a|              [1, 2]|  1|
|   a|              [1, 2]|  2|
|   b|[11, 22, 33, 44, 55]| 11|
|   b|[11, 22, 33, 44, 55]| 22|
|   b|[11, 22, 33, 44, 55]| 33|
|   b|[11, 22, 33, 44, 55]| 44|
|   b|[11, 22, 33, 44, 55]| 55|
+----+--------------------+---+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 关于 pk_key

当pk_key为列表时,可以用星号 *pk_key 来取出pk_key的值(似乎不用星号也行,还没看到不用星号会失败的情况)

详见下面关于 python 中单星号的用法(解压参数列表)

df1.show()
+----+-----+
|name|value|
+----+-----+
|   a|    1|
|   a|    2|
|   a|    2|
+----+-----+

df1.groupBy(*pk).agg(F.sum("value")).show()
+----+-----+----------+
|name|value|sum(value)|
+----+-----+----------+
|   a|    1|         1|
|   a|    2|         4|
+----+-----+----------+

# 在这里,pk 带不带星号,没有区别
df1.groupBy(pk).agg(F.sum("value")).show()
+----+-----+----------+
|name|value|sum(value)|
+----+-----+----------+
|   a|    1|         1|
|   a|    2|         4|
+----+-----+----------+

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

单星号的其中一个用法是解压参数列表

def func(a, b):
	print a, b

param = [1, 2]
func(*param)

1 2

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

2.6 join 操作

  • 如果想要保证左表不丢失数据,则需要用 left join,否则,用普通 join 即可

在使用 left join 的时候,左表比右表大,join 不上的部分,会以 null 显示,需要手动把这些null替换为其他值,便于计算,比如替换为0

# 这个参数使用的场合为:假如某个字段默认是null,你想其返回的不是null,而是比如0或其他值,可以使用这个函数 
df = df.join(df1,'t_id','left').withColumn('is_name',F.coalesce('my_col',F.lit(0))).drop('my_col')
# 其实就是把 my_col 列中为 NULL 的替换为 0
  • 1
  • 2
  • 3
  • join 两个表,二者有一个共同列 “ad_id”
  • 想知道第一个表的 ad_id 对应的 ocpc_type,所以需要到表2去找
df = spark.createDataFrame([('1', 'Joe'), ('4', 'Henry'), ('1', 'Nan'), ('4', 'Hesssnry')], ['ad_id', 'Name'])

df2 = spark.createDataFrame([('1', 'A'), ('4', 'B'), ('5', 'C')], ['ad_id', 'ocpc_type'])

df3 = df2.join(df, on='ad_id', how='left')

df3.show()
+-----+---------+--------+
|ad_id|ocpc_type|    Name|
+-----+---------+--------+
|    5|        C|    null|
|    1|        A|     Joe|
|    1|        A|     Nan|
|    4|        B|   Henry|
|    4|        B|Hesssnry|
+-----+---------+--------+

df3.filter('ocpc_type == "A"').show()
+-----+---------+----+
|ad_id|ocpc_type|Name|
+-----+---------+----+
|    1|        A| Joe|
|    1|        A| Nan|
+-----+---------+----+

# 如果变换下join到顺序
df3 = df.join(df2, on='ad_id', how='left')
df3.show()
+-----+--------+---------+
|ad_id|    Name|ocpc_type|
+-----+--------+---------+
|    1|     Joe|        A|
|    1|     Nan|        A|
|    4|   Henry|        B|
|    4|Hesssnry|        B|
+-----+--------+---------+

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

可以理解为,哪个表在join操作的前面,就以其为主,后面的为补充

  • left_semi
    取 df1 和 df2 相交的部分,df1的数据

  • left_anti
    取 df1 和 df2 相交的部分,df1的余下数据

df1.show()
+---+---+
| id|num|
+---+---+
|  A|  1|
|  B|  2|
|  C|  3|
+---+---+

df2.show()
+---+---+
| id|num|
+---+---+
|  C| 33|
|  D|  4|
|  E|  5|
+---+---+

# 1. 普通的 left join,右表中 join 不上的会以 null 填充
# left/left_outer/leftouter 都是一样的
df1.join(df2, "id", "left").show()
+---+---+----+
| id|num| num|
+---+---+----+
|  B|  2|null|
|  C|  3|  33|
|  A|  1|null|
+---+---+----+

# 2. 取 df1 和 df2 相交的部分,df1的数据(注意到 num 的取值为3,而不是33)
# # semi/leftsemi/left_semi 都是一样的
df1.join(df2, "id", "left_semi").show()
+---+---+
| id|num|
+---+---+
|  C|  3|
+---+---+

# 3. 取 df1 和 df2 相交的部分,df1的余下数据(从左表中去掉右表存在的部分)
# anti/leftanti/left_anti 都是一样的
df1.join(df2, "id", "left_anti").show()
+---+---+
| id|num|
+---+---+
|  B|  2|
|  A|  1|
+---+---+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 注意事项

当某个表 join 时,如果 join 的 pk_key 有重复的话,会出现组合爆炸的情况,需要保证 join 双方都没有重复的 pk_key

valuesA = [('Pirate',1),('Monkey',2),('Monkey',3),('Ninja',3),('Spaghetti',4)]
TableA = spark.createDataFrame(valuesA,['name','id'])
valuesB = [('Rutabaga',11) ,('Monkey',22) ,('Monkey',222),('Ninja',33),('Darth Vader',44)]
TableB = spark.createDataFrame(valuesB,['name','id2'])
TableA.join(TableB,on='name').show(50,False)
+------+---+---+
|name  |id |id2|
+------+---+---+
|Ninja |3  |33 |
|Monkey|2  |222|
|Monkey|2  |22 |
|Monkey|3  |222|
|Monkey|3  |22 |
+------+---+---+

# left join 保证了左表的数据不丢失,join 不上的,右表会以 null 填充
TableA.join(TableB,on='name',how='left').show(50,False)
+---------+---+----+
|name     |id |id2 |
+---------+---+----+
|Spaghetti|4  |null|
|Ninja    |3  |33  |
|Pirate   |1  |null|
|Monkey   |2  |22  |
|Monkey   |2  |222 |
|Monkey   |3  |22  |
|Monkey   |3  |222 |
+---------+---+----+

# 由于 tableA 和 tableB 中虽然有重复的 pk_key,但是值是不一样的,没法去重
TableA.dropDuplicates().join(TableB.dropDuplicates(),on='name').show(50,False)
+------+---+---+
|name  |id |id2|
+------+---+---+
|Ninja |3  |33 |
|Monkey|3  |22 |
|Monkey|3  |222|
|Monkey|2  |22 |
|Monkey|2  |222|
+------+---+---+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
In [25]: valuesC = [('Pirate',1),('Monkey',222),('Monkey',111),('Ninja',3),('Spaghetti',4)]

In [26]: TableC = spark.createDataFrame(valuesC,['name','id'])

In [27]: TableC.show()
+---------+---+
|     name| id|
+---------+---+
|   Pirate|  1|
|   Monkey|222|
|   Monkey|111|
|    Ninja|  3|
|Spaghetti|  4|
+---------+---+

In [28]: TableC.dropDuplicates().show()
+---------+---+
|     name| id|
+---------+---+
|   Pirate|  1|
|    Ninja|  3|
|   Monkey|111|
|   Monkey|222|
|Spaghetti|  4|
+---------+---+

----------------------------------------------------------------------------------------------

In [23]: valuesC = [('Pirate',1),('Monkey',222),('Monkey',222),('Ninja',3),('Spaghetti',4)]

In [24]: TableC = spark.createDataFrame(valuesC,['name','id'])

In [25]: TableC.show()
+---------+---+
|     name| id|
+---------+---+
|   Pirate|  1|
|   Monkey|222|
|   Monkey|222|
|    Ninja|  3|
|Spaghetti|  4|
+---------+---+


# 去重, join 之前必须保证 join 两者表中去重过
In [26]: TableC.dropDuplicates().show()
+---------+---+
|     name| id|
+---------+---+
|   Pirate|  1|
|    Ninja|  3|
|   Monkey|222|
|Spaghetti|  4|
+---------+---+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54

注意,如果列名重复,join 之后会出现重复列

df1 = spark.createDataFrame([("A", 1), ("B", 2)], ["name", "num"])
df1.show()
+----+---+
|name|num|
+----+---+
|   A|  1|
|   B|  2|
+----+---+

df2 = spark.createDataFrame([("A", 1), ("B", 2), ("C", 3)], ["name", "num"])
df2.show()
+----+---+
|name|num|
+----+---+
|   A|  1|
|   B|  2|
|   C|  3|
+----+---+

df3 = df1.join(df2, "name")
df3.show()
+----+---+---+
|name|num|num|
+----+---+---+
|   B|  2|  2|
|   A|  1|  1|
+----+---+---+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

2.5 复杂用法实例

  • F
from pyspark.sql import functions as F

  • 1
  • 2
  • coalesce(与 mysql 类似)
    作用是将返回传入的参数中第一个非null的值,比如

mysql

SELECT COALESCE(NULL, NULL, 1); 
Return 1 

# 如果传入的参数所有都是null,则返回null,比如 
SELECT COALESCE(NULL, NULL, NULL, NULL); 
Return NULL 

# 参数说明:如果a==null,则选择b;如果b==null,则选择c;如果a!=null,则选择a;如果a b c 都为null ,则返回为null(没意义)
select coalesce(a,b,c);

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

Spark


# 这个参数使用的场合为:假如某个字段默认是null,你想其返回的不是null,而是比如0或其他值,可以使用这个函数 
df = df.join(df1,'t_id','left').withColumn('is_name',F.coalesce('my_col',F.lit(0))).drop('my_col')
# 其实就是把 my_col 列中为 NULL 的替换为 0

  • 1
  • 2
  • 3
  • 4
  • 5
时间戳转日期

法一 (推荐)

# 时间戳转日期(这里的时间戳是毫秒,所以需要除以1000)【推荐】
df.select("time_stamp").withColumn("time_date", F.from_unixtime(F.col("time_stamp")/1000, 'yyyy-MM-dd HH:mm:ss.SS')).filter("time_date > '2022-10-19 21:00:00'")

# 时间戳转日期(这里的server_time时间戳是毫秒,所以需要除以1000)【麻烦一些】
df = df.withColumn("server_time_ts", (F.col("server_time").cast(LongType()) / 1000.).cast(LongType())).withColumn("server_time_date", F.from_unixtime("server_time_ts"))


# 日期转时间戳
df.select("time_date").withColumn("time_stamp", unix_timestamp("time_date", "yyyy-MM-dd HH:mm:ss"))

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

法二
注意! 这里用到的是 spark SQL 的语法,而不是python的语法 ,参考 Spark SQL

valuesA = [('Pirate',1609785094),('Monkey',1609785094),('Monkey',1609785094),('Ninja',1609785094),('Spaghetti',0)]

TableA = spark.createDataFrame(valuesA,['name','time'])

new_time = F.expr("FROM_UNIXTIME(`time`, 'yyyy-MM-dd')")
# print new_time 看看
df2 = df.where(new_time == "2021-01-01")

df2.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

如果是 python 的话,则用下面的语法

#coding:UTF-8
import time

dt = "2016-05-05 20:28:54"

#转换成时间数组
timeArray = time.strptime(dt, "%Y-%m-%d %H:%M:%S")
#转换成新的时间格式(20160505-20:28:54)
dt_new = time.strftime("%Y%m%d-%H:%M:%S",timeArray)

print dt_new


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

2.7 判断两个 dataframe 是否相同

参考:Spark sql实战–如何比较两个dataframe是否相等

a = [('Pirate',1),('Monkey',2)]
A = spark.createDataFrame(a,['name','id'])

In [3]: A.show()
+------+---+
|  name| id|
+------+---+
|Pirate|  1|
|Monkey|  2|
+------+---+

b = [('Monkey',2),('Pirate',1)]
B = spark.createDataFrame(b,['name','id'])

In [6]: B.show()
+------+---+
|  name| id|
+------+---+
|Monkey|  2|
|Pirate|  1|
+------+---+

def match_df(df1, df2):
    count1 = len(df1.subtract(df2).take(1))
    count2 = len(df2.subtract(df1).take(1))
    return True if count1 == count2 and count1 == 0 else False

print match_df(A, B)

True
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

2.8 交集&并集&合集

1. 交集&并集&合集

  • 差集 except
# df1不在df2中的部分,可以理解为 df1-(df1和df2的交集)
df1.subtract(df2)

In [31]: df1.show()
+-----+
|value|
+-----+
|    1|
|    2|
|    3|
+-----+

In [32]: df2.show()
+-----+
|value|
+-----+
|    2|
|    3|
|    4|
+-----+

In [33]: df1.subtract(df2).show()
+-----+
|value|
+-----+
|    1|
+-----+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 交集
df1.intersect(df2)
  • 1
  • 合集
df1.union(df2)

# 并去重
df1.union(df2).distinct()
  • 1
  • 2
  • 3
  • 4
  • 关于union的坑
    union的2张表,必须保证字段完全相同,且字段的顺序完全相同!函数本身不会按照字段来union,只会机械得进行2表的拼接
df1 = spark.createDataFrame([("A", 1, 0), ("B", 1, 0)], ["id", "is_girl", "is_boy"])
+---+-------+------+
| id|is_girl|is_boy|
+---+-------+------+
|  A|      1|     0|
|  B|      1|     0|
+---+-------+------+

df2 = spark.createDataFrame([("C", 1, 0), ("D", 1, 0)], ["id", "is_boy", "is_girl"])
+---+------+-------+
| id|is_boy|is_girl|
+---+------+-------+
|  C|     1|      0|
|  D|     1|      0|
+---+------+-------+

# 直接union的话,由于字段顺序不同,只会机械得将2张表组合在一起,并不会自动调换字段的顺序
# 这样拼接是错误的!!!
df1.union(df2).show()
+---+-------+------+
| id|is_girl|is_boy|
+---+-------+------+
|  A|      1|     0|
|  B|      1|     0|
|  C|      1|     0|
|  D|      1|     0|
+---+-------+------+

# 需要手动修改字段顺序,保证字段顺序一致
df1.selectExpr("id", "is_girl", "is_boy").union(df2.selectExpr("id", "is_girl", "is_boy")).show()
+---+-------+------+
| id|is_girl|is_boy|
+---+-------+------+
|  A|      1|     0|
|  B|      1|     0|
|  C|      0|     1|
|  D|      0|     1|
+---+-------+------+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

2. join和交集的区别

df1 = spark.createDataFrame([("A", 1), ("A", 11), ("B", 2), ("B", 3)], ["name", "num"]).select("name")

df2 = spark.createDataFrame([("A", 1), ("B", 2), ("B", 3)], ["name", "num"]).select("name")

df1.show()
+----+
|name|
+----+
|   A|
|   A|
|   B|
|   B|
+----+

df2.show()
+----+
|name|
+----+
|   A|
|   B|
|   B|
+----+

# intersect 自带左右两端去重
In [28]: df1.intersect(df2).show()
+----+
|name|
+----+
|   B|
|   A|
+----+

# 如果有重复,join会导致重复更严重
In [29]: df1.join(df2, "name").show()
+----+
|name|
+----+
|   B|
|   B|
|   B|
|   B|
|   A|
|   A|
+----+

# 手动两端去重(和 intersect 效果一样了)
In [30]: df1.dropDuplicates().join(df2.dropDuplicates(), "name").show()

+----+
|name|
+----+
|   B|
|   A|
+----+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54

2.9 计算某列的均值 & 求和

valuesA = [('Pirate',1),('Monkey',2),('Monkey',3),('Ninja',3),('Spaghetti',4)]
A = spark.createDataFrame(valuesA,['name','id'])

########## 法一 ############
A.agg({'id': 'avg'}).show()
+-------+
|avg(id)|
+-------+
|    2.6|
+-------+

A.agg({'id': 'sum'}).show()
+-------+
|sum(id)|
+-------+
|     13|
+-------+

############ 法二 ############
from pyspark.sql import functions as F

A.agg(F.avg('id').alias('id_avg')).show()
+------+
|id_avg|
+------+
|   2.6|
+------+

A.agg(F.sum('id').alias('id_sum')).show()
+------+
|id_sum|
+------+
|    13|
+------+

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 例子:求列中各个元素的占比

collect 可以取出列中的元素值

import pyspark.sql.functions as F
A = [[1,'CAT1',10], [2, 'CAT2', 20], [3, 'CAT3', 70]]
df = spark.createDataFrame(A, ['id', 'cate', 'value'])

df.show()
+---+----+-----+
| id|cate|value|
+---+----+-----+
|  1|CAT1|   10|
|  2|CAT2|   20|
|  3|CAT3|   70|
+---+----+-----+

# 求列和 法一
df.agg(F.sum("value")).show()
+----------+
|sum(value)|
+----------+
|       100|
+----------+

# 求列和 法二
df.groupBy("cate").sum("value").show()
+----+----------+
|cate|sum(value)|
+----+----------+
|CAT2|        20|
|CAT1|        10|
|CAT3|        70|
+----+----------+


# 求列和 法三
df.groupBy("value").sum().collect()
Out[36]:
[Row(value=10, sum(id)=1, sum(value)=10),
 Row(value=20, sum(id)=2, sum(value)=20),
 Row(value=70, sum(id)=3, sum(value)=70)]
 
 df.groupBy("value").sum().collect()[0][1]
 Out[37]: 1
 
 df.groupBy("value").sum().collect()[0][2]
Out[38]: 10

# 求列和 法四
df.agg({"value":"sum"}).collect()
Out[39]: Row(sum(value)=100)

df.agg({"value":"sum"}).collect()[0][0]
Out[41]: 100

# 求列和 法五(推荐)
df.agg(F.sum("value")).collect()[0][0]
Out[47]: 100

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56

开始求占比

# 获取列求和值
value_sum = df.agg(F.sum("value")).collect()[0][0]
# 新增一列
df2 = df.withColumn("sum", F.lit(value_sum))
df2.show()
+---+----+-----+---+
| id|cate|value|sum|
+---+----+-----+---+
|  1|CAT1|   10|100|
|  2|CAT2|   20|100|
|  3|CAT3|   70|100|
+---+----+-----+---+

df2 = df2.withColumn("ratio", F.round(F.col("value") / F.col("sum"), 3))
df2.show()
+---+----+-----+---+-----+
| id|cate|value|sum|ratio|
+---+----+-----+---+-----+
|  1|CAT1|   10|100|  0.1|
|  2|CAT2|   20|100|  0.2|
|  3|CAT3|   70|100|  0.7|
+---+----+-----+---+-----+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

四、复杂操作

4.1 concat_ws 重组列

  • concat_ws
import pyspark.sql.functions as F
df1.show()
+----+-----+
|name|value|
+----+-----+
|   a|    1|
|   b|    2|
+----+-----+

# 将两列通过下划线 “_”,进行合并
df1.select(F.concat_ws("_", F.col("name"), F.col("value").alias("name_value")), "name").show()

# 或者 
df1.withColumn("new_col", F.concat_ws('_', 'col1', 'col2'))

+-----------------------------------------+----+
|concat_ws(_, name, value AS `name_value`)|name|
+-----------------------------------------+----+
|                                      a_1|   a|
|                                      b_2|   b|
+-----------------------------------------+----+

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

4.2 udf 复杂自定义函数

参考:【Pyspark】UDF函数的使用、UDF传入多个参数、UDF传出多个参数、传入特殊数据类型

from pyspark.sql.types import ArrayType, IntegerType
from pyspark.sql import functions as F

A = [("a", [1,2,3], [10, 20, 30]), ("b", [4, 5, 6], [100, 200, 300])]
df1 = spark.createDataFrame(A, ["name", "value1", "value2"])

df1.show()
+----+---------+---------------+
|name|   value1|         value2|
+----+---------+---------------+
|   a|[1, 2, 3]|   [10, 20, 30]|
|   b|[4, 5, 6]|[100, 200, 300]|
+----+---------+---------------+

# 自定义函数
def func(list1, list2):
	"""
	list1 和 list2 分别是表的两个列名
	"""
	list3 = []
	for i, j in zip(list1, list2):
		list3.append(i * j)
	return list3

# udf 需要指定函数的输出类型,这里是整数列表
func_udf = F.udf(func, ArrayType(IntegerType()))
df2 = df1.withColumn("new_col", func_udf("value1", "value2"))

df2.show()
+----+---------+---------------+-----------------+
|name|   value1|         value2|          new_col|
+----+---------+---------------+-----------------+
|   a|[1, 2, 3]|   [10, 20, 30]|     [10, 40, 90]|
|   b|[4, 5, 6]|[100, 200, 300]|[400, 1000, 1800]|
+----+---------+---------------+-----------------+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

4.3 window 分组排序

参考:

  1. Spark Window 入门介绍
  2. Spark Window Functions-PySpark(窗口函数)

需求是,先对表中数据分组,再在组内进行排序

  • 例子
    找出每个科目中,排名第一的学生
from pyspark.sql import Window
from pyspark.sql import functions as F

df = spark.createDataFrame((
["A", 1, "Science", 20],
["B", 1, "Science", 80],
["C", 2, "Science", 90],
["D", 2, "Science", 40],
["E", 3, "Science", 60],
["F", 4, "Art", 60],
["G", 4, "Art", 50],
["H", 5, "Art", 90],
["I", 5, "Art", 100],
["J", 6, "Art", 20],
), ["name", "class", "subject", "score"])

# 按照 subject 分组,而后按照 score 从大到小排序
# 从大到小排序 F.desc("score") ,从小到大排序 F.asc("score")
window = Window.partitionBy("subject").orderBy(F.desc("score"))
df = df.withColumn("rank", F.row_number().over(window))
+----+-----+-------+-----+----+
|name|class|subject|score|rank|
+----+-----+-------+-----+----+
|   C|    2|Science|   90|   1|
|   B|    1|Science|   80|   2|
|   E|    3|Science|   60|   3|
|   D|    2|Science|   40|   4|
|   A|    1|Science|   20|   5|
|   I|    5|    Art|  100|   1|
|   H|    5|    Art|   90|   2|
|   F|    4|    Art|   60|   3|
|   G|    4|    Art|   50|   4|
|   J|    6|    Art|   20|   5|
+----+-----+-------+-----+----+

# 过滤出每组的第一名
df.filter("rank=1").show()
+----+-----+-------+-----+----+
|name|class|subject|score|rank|
+----+-----+-------+-----+----+
|   C|    2|Science|   90|   1|
|   I|    5|    Art|  100|   1|
+----+-----+-------+-----+----+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43

4.4 pyspark 实现对列累积求和

  1. 参考:pyspark 实现对列累积求和

pandas 的 cumsum() 函数可以实现对列的累积求和。使用示例如下:

import pandas as pd
data = [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0]
data = pd.DataFrame(data, columns=['diff'])
data['cumsum_num'] = data['diff'].cumsum()
print(data)
  • 1
  • 2
  • 3
  • 4
  • 5

输出结果:

    diff  cumsum_num
0      1           1
1      0           1
2      0           1
3      0           1
4      1           2
5      0           2
6      0           2
7      1           3
8      0           3
9      0           3
10     0           3
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

对于 pyspark 没有 cumsum() 函数可以直接进行累加求和,若要实现累积求和可以通过对一列有序的列建立排序的 Window 进行求和,代码如下所示:

创建 DataFrame 对象:

import pyspark
from pyspark.sql import functions as F
from pyspark.sql import SparkSession
from pyspark.sql import Window
import pandas as pd

conf = pyspark.SparkConf().setAll([])
spark_session = SparkSession.builder.appName('test_app').config(conf=conf).getOrCreate()
sc = spark_session.sparkContext
sc.setLogLevel('WARN')

data = [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0]
data = pd.DataFrame(data, columns=['diff'])
data['number'] = range(len(data))
df = spark_session.createDataFrame(data, schema=['diff', 'number'])
df.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

原 DataFrame 数据:

+----+------+
|diff|number|
+----+------+
|   1|     0|
|   0|     1|
|   0|     2|
|   0|     3|
|   1|     4|
|   0|     5|
|   0|     6|
|   1|     7|
|   0|     8|
|   0|     9|
|   0|    10|
+----+------+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

根据 number 排序实现累积求和:

win = Window.orderBy('number')
df.withColumn('cumsum_num', F.sum(df['diff']).over(win)).show()
  • 1
  • 2

结果为:

+----+------+----------+
|diff|number|cumsum_num|
+----+------+----------+
|   1|     0|         1|
|   0|     1|         1|
|   0|     2|         1|
|   0|     3|         1|
|   1|     4|         2|
|   0|     5|         2|
|   0|     6|         2|
|   1|     7|         3|
|   0|     8|         3|
|   0|     9|         3|
|   0|    10|         3|
+----+------+----------+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

4.5 中文乱码问题

u"中文" 即可

In [61]: A = [("a", "快手"), ("b", "抖音")]

In [62]: df__ = spark.createDataFrame(A, ["id", "name"])

In [63]: df__.show()
+---+------+
| id|  name|
+---+------+
|  a|快手|
|  b|抖音|
+---+------+

In [58]: A = [("a", u"快手"), ("b", u"抖音")]

In [59]: df__ = spark.createDataFrame(A, ["id", "name"])

In [60]: df__.show()
+---+----+
| id|name|
+---+----+
|  a|  快手|
|  b|  抖音|
+---+----+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

4.6 split 拆分 & 从列表中取元素

from pyspark.sql.functions import split
from pyspark.sql import functions as F

A = [("A", "20%"), ("B", "18%")]
df_ = spark.createDataFrame(A, ["name", "ratio1"])


df2_ = df_.withColumn('ratio1_new', split(F.col("ratio1"), "%").getItem(0) * F.lit(0.01))
df2_.show()

+----+------+----------+
|name|ratio1|ratio1_new|
+----+------+----------+
|   A|   20%|       0.2|
|   B|   18%|      0.18|
+----+------+----------+

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

如果某一列是列表,想要从该列表中取某个元素

  • 法一、上面提到的 getItem(index) 函数
  • 法二、如果要实现复杂的功能,比如取最后一个元素,不能直接使用 getItem(-1),需要写 UDF 函数
def func(col_list):
	try:
	    res = col_list[-1]
	except:
		res = -1
    return res
    
func_udf = F.udf(func, StringType())  # 注意,这里是函数的输出类型,类型不对的话,会输出 null
new_df = df.withColumn("col1_item_list", F.split("col1", ':')).withColumn("new_col", func_udf("col1_item_list")).cache()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

4.7 统计分位数

统计某一列的分位数

df_.show()
+----+-----+
|name|value|
+----+-----+
|   a|    1|
|   b|    2|
|   c|    3|
|   d|    4|
|   e|    5|
|   f|    6|
|   g|    7|
|   h|    8|
|   i|    9|
|   j|   10|
+----+-----+

# approxQuantile 第一个参数是列名,第二个参数是分位数,第三个参数是相对误差(relativeError),设定为0时代价巨大
df_.approxQuantile("value", [0.1, 0.5, 0.99], 0.1)

# 输出表示每个分位数对应的 value 值
Out[12]: [1.0, 4.0, 10.0]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

4.8 判断一列是否包含某字符

pyspark.sql.functions.instr

A = [("a", "aa_aaa"), ("b", "bb_bbb")]
df = spark.createDataFrame(A, ["name", "value"])

df.show()
+----+------+
|name| value|
+----+------+
|   a|aa_aaa|
|   b|bb_bbb|
+----+------+

# F.instr(F.col("value"), "aa") 返回的是 "aa" 在 "value" 列中的 index,如果不存在则返回 0
# 判断 字符串"aa"是否在 列 "value" 中

df.withColumn("is_instr", F.when((F.instr(F.col("value"), "aa"))==0, F.lit(0)).otherwise(F.lit(1))).show()
+----+------+--------+
|name| value|is_instr|
+----+------+--------+
|   a|aa_aaa|       1|
|   b|bb_bbb|       0|
+----+------+--------+


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

五、值替换

5.1 空值替换

法一、使用 fillna 函数

A = [("a", 1, None), ("b", None, 2), ("c", None, None)]
df_ = spark.createDataFrame(A, ["name", "value1", "value2"])
df_.show()
+----+------+------+
|name|value1|value2|
+----+------+------+
|   a|     1|  null|
|   b|  null|     2|
|   c|  null|  null|
+----+------+------+

df_.fillna({"value1": 0.0, "value2": 11.0}).show()
+----+------+------+
|name|value1|value2|
+----+------+------+
|   a|     1|    11|
|   b|     0|     2|
|   c|     0|    11|
+----+------+------+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

法二、when…otherwise 替换

这个方法可以进行复杂的值替换

from pyspark.sql import functions as F
A = [("a", 1, None), ("b", None, 2), ("c", None, None)]
df_ = spark.createDataFrame(A, ["name", "value1", "value2"])
df_.show()
+----+------+------+
|name|value1|value2|
+----+------+------+
|   a|     1|  null|
|   b|  null|     2|
|   c|  null|  null|
+----+------+------+

# 注意!这个方法如果没有显示指定的值会变成null,所以每一类情况都得考虑
df_.withColumn("value3", F.when(F.col("value1")<10, F.lit(10)).otherwise(F.lit(-10))).show()
+----+------+------+------+
|name|value1|value2|value3|
+----+------+------+------+
|   a|     1|  null|    10|
|   b|  null|     2|   -10|
|   c|  null|  null|   -10|
+----+------+------+------+

# withColumn出来的新列如果和原先存在的列同名的话会自动覆盖
df_.withColumn("value1",F.when(F.col("value1").isNull(),F.lit(0.0)).otherwise(F.lit(F.col("value1"))))\
.withColumn("value2", F.when(F.col("value2").isNull(),F.lit(11)).otherwise(F.lit(F.col("value2")))).show()

+----+------+------+
|name|value1|value2|
+----+------+------+
|   a|   1.0|    11|
|   b|   0.0|     2|
|   c|   0.0|    11|
+----+------+------+

# 对现有列的值域进行复杂分类 (1)
group1 = ["a"]
group2 = ["b"]
df = df.withColumn("group", F.when(F.col("name").isin(group1), F.lit("goup_1")).when(F.col("name").isin(group2), F.lit("goup_2")).otherwise(F.lit("group_other")))
+----+------+------+-----------+
|name|value1|value2|      group|
+----+------+------+-----------+
|   a|     1|  null|     goup_1|
|   b|  null|     2|     goup_2|
|   c|  null|  null|group_other|
+----+------+------+-----------+

# 对现有列的值域进行复杂分类 (2)
# 注意等于号是双等于 “==”

df = df.withColumn("value", F.when(F.col("value1")==1.0, F.lit("value_is_1")).otherwise(F.lit("value_is_other")))
+----+------+------+--------------+
|name|value1|value2|         value|
+----+------+------+--------------+
|   a|     1|  null|    value_is_1|
|   b|  null|     2|value_is_other|
|   c|  null|  null|value_is_other|
+----+------+------+--------------+

# 同时满足多个条件
df = df\
     .withColumn("col_pair", F.concat_ws('_', 'col1', 'col2'))\  # 组合多列成 "col1_col2"
     .withColumn("new_col", F.when((F.col("valid") == '1') & (F.col('col_pair') != '4_9'), F.lit(1)).otherwise(F.lit(0)))

###########【最为推荐!!!】############
# 对于更加复杂的表达式,可以使用 F.expr() 
df = df.withColumn("new_col", F.when(F.expr("value1>0.5 and value1<1.5"), F.lit("111")).otherwise(F.lit("value_is_other")))

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • bool 值的情况

使用双等于号 “==”

df.show()
+----+-----+
|name|value|
+----+-----+
|   a| true|
|   b|false|
|   c| true|
+----+-----+

df.withColumn("value_new", F.when(F.col("value")==True, F.lit(1)).otherwise(F.lit(0))).show()
+----+-----+---------+
|name|value|value_new|
+----+-----+---------+
|   a| true|        1|
|   b|false|        0|
|   c| true|        1|
+----+-----+---------+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

六、数据保存

  • 写入 parquet
df.write.parquet("/path")
  • 1
  • 写入 csv
df.toPandas().to_csv("stat.csv", encoding='utf-8')
  • 1

七、检查hdfs数据是否存在

#!/usr/bin/env python
# coding=utf-8

import sys
import os

cmd = ''
cmd += ' /opt/path1/hadoop fs -test -e /path2/20220101 '
res = os.system(cmd)

print("res: ", res)

if res == 0:
	print("the data is exist")
else:
	print("the data is not exist")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

如果数据存在,则 res==0,否则不为0

八、暗坑

1. union

本文 [2.8 交集&并集&合集] 也提到 union 的坑,即 union 操作只会机械的拼接,不会按照列名拼接 (虽然有 unionByName 函数,但是本人还是更倾向于事先assert两个表的字段,防止出错)。

# 法1. 强行指定列名
join_cols_list = ["col1", "col2"]
df1 = df1.selectExpr(*join_cols_list)
df2 = df2.selectExpr(*join_cols_list)

# 法2. 使用 assert
# assert df1.columns == df1.columns
df = df1.union(df2)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

2. 先select 再 filter/where

虽然本质上并没有产生错误的结论,但是还需要注意

df.show()
+----+-----+
|name|value|
+----+-----+
|   a|    1|
|   b|    2|
+----+-----+

df_1 = df_.select("name")
+----+
|name|
+----+
|   a|
|   b|
+----+

# 虽然 df_1 的字段中只有 name, 但是value字段在原始表 df 中, filter 时仍然可以使用(但是建议显示指定)
# 比如在使用 filter 之前使用 assert 确认 某字段 在columns中
# assert "value" in df_1.columns

df_1.filter("value=1").show()
+----+
|name|
+----+
|   a|
+----+
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
参考:
  1. pyspark.sql api 文档
  2. Spark-SQL之DataFrame操作大全
  3. Spark 2.2.x 中文文档
  4. Pyspark数据基础操作集合(DataFrame)
  5. PySpark-DataFrame各种常用操作举例
  6. (超详细)PySpark︱DataFrame操作指南:增/删/改/查/合并/统计与数据处理
  7. pyspark.sql module
  8. Spark—DataFrame学习(二)——select、selectExpr函数
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/632414
推荐阅读
相关标签
  

闽ICP备14008679号