赞
踩
2024 ICM Problem D: Great Lakes Water Problem
Background
The Great Lakes of the United States and Canada are the largest group of freshwater lakes in the world. The five lakes and connecting waterways constitute a massive drainage basin that contains many large urban areas in these two countries, with varied climate and localized weather conditions.
The lakes’ water is used for many purposes (fishing, recreation, power generation, drinking, shipping, animal and fish habitat, construction, irrigation, etc.). Consequently, a vast variety of stakeholders have an interest in the management of the water that flows into and out of the lakes. In particular, if too little water is drained or evaporates from the lakes, then flooding may occur and homes and businesses along the shore suffer; if too much water is drained, then large ships cannot travel through the waterways to bring supplies and support the local economy. The main problem is regulating the water levels such that all stakeholders can benefit.
The water level in each lake is determined by how much water enters and leaves the lake. These levels are the result of complex interactions among temperature, wind, tides, precipitation, evaporation, bathymetry (the shape of the lake bottom), river flows and runoff, reservoir policies, seasonal cycles, and long-term climate changes. There are two primary control mechanisms within the flow of water in the Great Lakes system – Compensating Works of the Soo Locks at Sault Ste. Marie (three hydropower plants, five navigation locks, and a gated dam at the head of the rapids) and the Moses-Saunders Dam at Cornwall as indicated in the Addendum.
While the two control dams, many channels and canals, and the drainage basin reservoirs may be controlled by humans, the rates of rain, evaporation, erosion, ice jams, and other water-flow phenomena are beyond human manipulation. The policies of local jurisdictions may have different effects than expected, as can seasonal and environmental changes in the water basin. These changes in turn affect the ecosystem of the area, which impacts the health of the flora and fauna found in and around the lakes and the residents that live in the water basin. Even though the Great Lakes seem to have a regular annual pattern, a variance from normal of two to three feet of water level can dramatically affect some of the stakeholders.
This dynamic network flow problem is “wicked” – exceptionally challenging to solve because of interdependencies, complicated requirements, and inherent uncertainties. For the lake’s problems, we have ever-changing dynamics and the conflicting interests of stakeholders.
Requirement The International Joint Commission (IJC) requests support from your company, International network Control Modelers – ICM, to assist with management and models for the control mechanisms (the two dams – Compensating Works and Moses-Saunders Dam as indicated in the Addendum) that directly influence water levels in the Great Lakes flow network. Your ICM supervisor has given your team the lead in developing the model and a management plan to implement the model. Your supervisor indicates there are several considerations that may help to achieve this goal starting with the building of a network model for the Great Lakes and connecting river flows from Lake Superior to the Atlantic Ocean. Some other optional considerations or issues your supervisor mentioned were:
Determination of the optimal water levels of the five Great Lakes at any time of the year, taking into account the various stakeholders’ desires (the costs and benefits could be different for each stakeholder).
Establishment of algorithms to maintain optimal water levels in the five lakes from inflow and outflow data for the lakes.
Understanding of the sensitivity of your control algorithms for the outflow of the two control dams. Given the data for 2017, would your new controls result in satisfactory or better than the actual recorded water levels for the various stakeholders for that year? • How sensitive is your algorithm to changes in environmental conditions (e.g., precipitation, winter snowpack, ice jams)?
Focus your extensive analysis of ONLY the stakeholders and factors influencing Lake Ontario as there is more recent concern for the management of the water level for this lake.
The IJC is also interested in what historical data you use to inform your models and establish parameters, as they are curious to compare how your management and control strategies compare to previous models. Provide a one-page memo to IJC leadership communicating the key features of your model to convince them to select your model.
问题D 五大湖的水位控制问题
美国和加拿大的五大湖是世界上最大的淡水湖群。这五个湖泊和相连的水道构成了一个巨大的流域,其中包含了这两个国家的许多大城市,气候和当地的天气条件各不相同。
湖区的水有多种用途(捕鱼、娱乐、发电、饮用、航运、动物和鱼类栖息地、建筑、灌溉等)。因此,各种各样的利益相关者都对流入和流出湖泊的水的管理感兴趣。特别是,如果从湖泊排出或蒸发的水太少,那么可能会发生洪水,沿岸的家庭和企业受到影响;如果排水过多,那么大型船只就无法通过水路运送补给,支持当地经济。主要问题是调节水位,使所有利益相关者都能受益。
每个湖泊的水位是由进出湖泊的水量决定的。这些水位是温度、风、潮汐、降水、蒸发、测深(湖底形状)、河流流量和径流、水库政策、季节周期和长期气候变化等复杂相互作用的结果。在五大湖系统的水流中有两种主要的控制机制:苏河水闸补偿工程。玛丽(三个水力发电厂,五个航行船闸和一个在激流顶端的闸门大坝)和康沃尔的摩西-桑德斯大坝,如附录所示。
虽然这两座控制水坝、许多渠道和运河以及流域水库可能是由人类控制的,但降雨、蒸发、侵蚀、冰塞和其他水流现象的速率是人类无法控制的。地方政府的政策可能会产生与预期不同的影响,流域的季节和环境变化也可能会产生不同的影响。这些变化反过来又会影响该地区的生态系统,从而影响湖泊内外动植物的健康以及生活在水盆中的居民。尽管五大湖似乎有一个规律的年度模式,但水位从正常水平的2到3英尺的变化会极大地影响一些利益相关者。这种动态的网络流量问题是“邪恶的”——由于相互依赖、复杂的要求和固有的不确定性,解决起来异常具有挑战性。对于湖泊的问题,我们有不断变化的动态和利益相关者的利益冲突。
要求国际联合委员会(IJC)请求贵公司国际网络控制建模师(icm)提供支持,协助管理和建模直接影响五大湖水网水位的控制机制(附录中所示的两座水坝-补偿工程和摩西-桑德斯大坝)。你的ICM主管已经让你的团队领导开发模型和实施模型的管理计划。你的导师指出,有几个考虑因素可能有助于实现这一目标,首先是为五大湖建立一个网络模型,并将从苏必利尔湖到大西洋的河流连接起来。你的导师提到的其他一些可选的考虑因素或问题是:
这个数学建模赛题涉及管理美加大湖流域的水资源,主要考虑如何调节水位以满足各利益相关者的需求。解决这个问题需要建立数学模型来模拟大湖流域水流网络,并通过算法来优化水位调节,同时考虑到环境条件的变化对算法的影响。具体来说,需要考虑建立大湖流域水流网络模型、水位调节算法、以及环境条件变化对算法的影响分析模型。
针对第一个问题,需要建立一个大湖流域水流网络模型,考虑到湖泊进出水量、温度、风向、潮汐、降水、蒸发、河流流量等因素。可以利用网络流模型或动态系统模型来描述水流网络,考虑各个湖泊和河流之间的相互作用。然后通过最优化算法来确定各湖泊的最佳水位,以满足不同利益相关者的需求。
针对第二个问题,需要建立水位调节算法,根据进出水量数据来调节两个控制坝的出水量。可能的方法包括使用控制论方法或优化算法,根据历史数据建立水位调节模型,并评估模型对各利益相关者水位需求的满足程度。
针对第三个问题,需要评估算法对环境条件变化的敏感性,包括降水、冬季积雪、冰堵等因素。可以利用敏感性分析方法来评估算法对这些因素的响应程度,并提出相应的调整策略。
针对第四个问题,需要对安大略湖的利益相关者和影响因素进行深入分析,了解其水位管理的特点和挑战。可以利用数据分析方法来评估不同水位调节策略对各利益相关者的影响,并提出针对性的管理建议。
第一个问题涉及综合考虑不同利益相关者的需求,并从湖泊的流入和流出数据中建立维持五个湖泊最佳水位的算法。以下是详细分析:
目标:
建立一个多目标规划(MOP)模型,以综合考虑各利益相关者的需求,并优化水位以平衡不同目标。
步骤:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。