当前位置:   article > 正文

路径规划 - 算法基础_图论 路径规划

图论 路径规划

1 几个重要概念

  • 图的路径:图G =中,从任一顶点开始,由边或弧的邻接至关系构成的有限长顶点序列称为路径。

    注意:有向图的路径必须沿弧的方向构成顶点序列;构成路径的顶点可能重复出现(即允许反复绕圈)。

  • 路径长度:路径中边或弧的数目。
  • 简单路径:除第一个和最后一个顶点外,路径中无其它重复出现的顶点,称为简单路径。
  • 回路或环:路径中的第一个顶点和最后一个顶点相同时,称为回路或环。
  • 图的最短路径:如果从有向图中某一顶点(称为源点)到达另一顶点(称为终点)的路径可能不止一条,如何找到一条路径使得沿此路径上各边上的权值总和达到最小。

2 深度或广度优先搜索算法

算法概述

    从起点开始访问所有深度遍历路径或广度优先路径,则到达终点节点的路径有多条,取其中路径权值最短的一条则为最短路径。

算法流程

(1)选择单源的起点作为遍历的起始点。
  
(2)采用深度优先搜索或者广度优先搜索的方式遍历图,在遍历同时记录可以到达终点的路径。
  
(3)在所有路径中选择距离最短的路径。

算法分析

    采用遍历的方式获取单源最短路径,是一种暴力破解的方式。算法的性能与遍历过程性能相关。采用深度优先搜索遍历时时间复杂度为O(n+e)。

3 迪杰斯特拉(Dijkstra)算法

算法概述

  Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算某个顶点到其他所有顶点的最短路径。Dijkstra(迪杰斯特拉)算法要求图中不存在负权边,即保证图中每条边的权重值为正。算法的基本思想是:从源点出发,每次选择离源点最近的一个顶点前进,然后以该顶点为中心进行扩展,最终得到源点到其余所有点的最短路径。

算法流程

(1)将所有的顶点分为两部分:已知最短路程的顶点集合P和未知最短路径的顶点集合Q。最开始,已知最短路径的顶点集合P中只有源点s一个顶点。我们这里用一个book[i]数组来记录哪些点在集合P中。例如对于某个顶点i,如果book[i] = 1则表示这个顶点在集合P中,如果book[i] = 0则表示这个顶点在集合Q中。

(2)设置源点s到自己的最短路径为0即dist = 0。若存在源点有能直接到达的顶点i,则把dist[i]设为e[s][i]。同时把所有其它(即源点不能直接到达的)顶点的最短路径为设为∞。

(3)在Q中选择一个离源点s最近的顶点u(即dist[u]最小)加入到P中。并考察所有以点u为起点的边,对每一条边进行松弛操作。

(4)重复第3步,如果集合Q为空,算法结束。最终dist数组中的值就是源点到所有顶点的最短路径。

算法分析

  • 复杂度:迪杰斯特拉(Dijkstra)算法适用于权值为非负的图的单源最短路径,使用最小堆时间复杂度是O(VLogV),用斐波那契堆的复杂度O(E+VlgV)。
  • 为什么不能有负权边:Dijkstra算法当中将节点分为已求得最短路径的集合(记为P)和未确定最短路径的个集合(记为Q),归入P集合的节点的最短路径及其长度不再变更,如果边上的权值允许为负值,那么有可能出现当与P内某点(记为a)以负边相连的点(记为b)确定其最短路径时,它的最短路径长度加上这条负边的权值结果小于a原先确定的最短路径长度(意思是原先从a0—a已经确定一个最短路径,而此时的边权值为负,则此步骤中的边权计算结果必定小于已经确定了的路径长度),但是a在Dijkstra算法下是无法更新的,由此便可能得不到正确的结果。

4 Bellman-Ford算法

算法概述

  Bellman-Ford算法是从Dijkstra算法算法引申出来的,它可以解决带有负权边的最短路径问题。值得注意的是,Dijkstra算法和下面的Floyd算法是基于邻接矩阵的,而Bellman-Ford算法是基于邻接表,从边的角度考量的。用一句话概括就是:对所有的边进行n-1次松弛操作。如果图中存在最短路径(即不存在负权回路),那么最短路径所包含的边最多为n-1条,也就是不可能包含回路。因为如果存在正回路,该路径就不是最短的,而如果存在负回路,就压根就不存在所谓的最短路径。

算法流程

(1)从源点到任意一点u的最短路径的长度,初始化数组dist[u]为0,其余dist[i]为无穷大。

(2)以下操作循环执行至多n-1次,n为顶点数:
  对于每一条边edge(u,v),如果dist[u] + weight(u,v) < dist[v],则令dist[v] = dist[u] + weight(u,v)。若上述操作没有对dist进行更新,说明最短路径已经查找完毕,或者部分点不可达,跳出循环。否则执行下次循环;
  
(3)检测图中是否存在负环路,即权值之和小于0的环路。对于每一条边edge(u,v),如果存在dist[u] + weight(u,v) < dist[v]的边,则图中存在负环路,即是说该图无法求出单源最短路径。否则数组dist[n]中记录的就是源点s到各顶点的最短路径长度。

算法分析

  Bellman-Ford算法初始化过程时间复杂度为O(V),对边进行了V-1趟操作,每趟操作的运行时间为O(E)。整体的时间复杂度为O(V*E)

5 SPFA算法

算法概述

  SPFA(Shortest Path Faster Algorithm)算法是求单源最短路径的一种算法,它是Bellman-ford的队列优化。

算法流程

(1)初始化:选取顶点u为源点,令dist[u]=0,其余赋值为INF。并将源点入队列。

(2)读取队列头的顶点,并将头顶点u出队列,将与u邻接的所有顶点v进行松弛,若v没有在队列中,则将邻接顶点v入队列。如果已经在队列中,则不再入队。

(3)队列为空时,单源最短路径查找完毕。

6 弗洛伊德(Floyd)算法

算法概述

  Floyd算法是一个经典的动态规划算法。其主要思想为:从任意顶点u到任意顶点v的最短路径不外乎2种可能,一是直接从u到v,二是从u经过若干个顶点k到v。所以,我们假设dist(u,v)为顶点u到顶点v的最短路径的距离,对于每一个顶点k,我们检查dist(u,k) + dist(k,v) < dist(u,v)是否成立,如果成立,证明从u到k再到v的路径比u直接到v的路径短,我们便设置dist(u,v) = dist(u,k) + dist(k,v),这样一来,当我们遍历完所有顶点k,dist(u,v)中记录的便是u到v的最短路径的距离。

算法流程

(1)从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。  
 
(2)对于每一对顶点u和v,看看是否存在一个顶点w使得从u到w再到v比己知的路径更短。如果是更新它。

算法分析

弗洛伊德(Floyd)算法的核心代码如下:

for(int i = 1; i <= n; i++)//枚举所有顶点,i代表顶点u

{

    for(int j = 1; j <= n; j++)//枚举所有顶点,j代表顶点v

    {

        for(int k = 1; k <= n; k++)//查找是否有中间顶点w使得从u到w再到v比己知的路径更短

        {

            if(dist[j][k] > dist[j][i] + dist[i][k])

            {

                dist[j][k] = dist[j][i] + dist[i][k];

            }

        }

    }

}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

  可以看出Floyd算法是一种暴力破解的方式获取最短路径。Floyd算法的时间复杂度为O(n^3) 空间复杂度为O(n^2)。Floyd算法可以获得任意顶点对之间的最短路径。

结语

  最短路径问题是图论研究中的一个经典算法问题。因此针对图最短路径问题先后提出了许多算法。各类算法的应用场景不尽相同。Dijkstra算法和Bellman-Ford算法用于解决单源最短路径,而Floyd算法可以解决多源最短路径。
  
  Dijkstra算法适用稠密图(邻接矩阵),因为稠密图问题与顶点关系密切。Bellman-Ford算法算法适用稀疏图(邻接表),因为稀疏图问题与边关系密切。 Floyd算法在稠密图(邻接矩阵)和稀疏图(邻接表)中都可以使用。


本文由 程序员小吴 创作,采用 CC BY 3.0 CN协议 进行许可,转自https://www.cxyxiaowu.com/1172.html

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/647749
推荐阅读
相关标签
  

闽ICP备14008679号