当前位置:   article > 正文

HNU人工智能导论作业3_贝叶斯网络题目

贝叶斯网络题目

人工智能导论清览第3次作业

1 . 贝叶斯网络

根据图所给出的贝叶斯网络,其中:P(A)=0.5,P(B|A)=1, P(B|¬A)=0.5, P(C|A)=1, P(C|¬A)=0.5,P(D|BC)=1,P(D|B, ¬C)=0.5,P(D|¬B,C)=0.5,P(D|¬B, ¬C)=0。试计算下列概率P(A|D)。
在这里插入图片描述
Answer:
在这里插入图片描述

2 . 概率推理

设有如下推理规则

   r1: IF E1 THEN (2, 0.00001) H1

   r2: IF E2 THEN (100, 0.0001) H1

   r3: IF E3 THEN (200, 0.001) H2

   r4: IF H1 THEN (50, 0.1) H2
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

且已知P(E1)= P(E2)= P(H3)=0.6, P(H1)=0.091, P(H2)=0.01, 又由用户告知:

   P(E1| S1)=0.84, P(E2|S2)=0.68, P(E3|S3)=0.36
  • 1

请用主观Bayes方法求P(H2|S1, S2, S3)=?

(1) 由r1计算O(H1| S1)

(2) 由r2计算O(H1| S2)(3) 计算O(H2| S1,S2,S3)和P(H2| S1,S2,S3)

(3) 计算O(H1| S1,S2)和P(H1| S1,S2)

(4) 由r3计算O(H2| S3)

(5) 由r4计算O(H2| H1)

(6) 计算O(H2| S1,S2,S3)和P(H2| S1,S2,S3)

Answer:
(1) 先把H1的先验概率更新为在E1下的后验概率P(H1| E1)

      P(H1| E1)=(LS1 × P(H1)) / ((LS1-1) × P(H1)+1)

             =(2 × 0.091) / ((2 -1) × 0.091 +1)

             =0.16682
  • 1
  • 2
  • 3
  • 4
  • 5

由于P(E1|S1)=0.84 > P(E1),使用P(H | S)公式的后半部分,得到在当前观察S1下的后验概率P(H1| S1)和后验几率O(H1| S1)

   P(H1| S1) = P(H1) + ((P(H1| E1) – P(H1)) / (1 - P(E1))) × (P(E1| S1) – P(E1))

           = 0.091 + (0.16682 –0.091) / (1 – 0.6)) × (0.84 – 0.6)

           =0.091 + 0.18955 × 0.24 = 0.136492

   O(H1| S1) = P(H1| S1) / (1 - P(H1| S1))

           = 0.15807
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

(2) 由r2计算O(H1| S2)

  先把H1的先验概率更新为在E2下的后验概率P(H1| E2)

      P(H1| E2)=(LS2 × P(H1)) / ((LS2-1) × P(H1)+1)

             =(100 × 0.091) / ((100 -1) × 0.091 +1)

             =0.90918
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

由于P(E2|S2)=0.68 > P(E2),使用P(H | S)公式的后半部分,得到在当前观察S2下的后验概率P(H1| S2)和后验几率O(H1| S2)

   P(H1| S2) = P(H1) + ((P(H1| E2) – P(H1)) / (1 - P(E2))) × (P(E2| S2) – P(E2))

           = 0.091 + (0.90918 –0.091) / (1 – 0.6)) × (0.68 – 0.6)

           =0.25464

   O(H1| S2) = P(H1| S2) / (1 - P(H1| S2))

           =0.34163
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

(3) 计算O(H1| S1,S2)和P(H1| S1,S2)

先将H1的先验概率转换为先验几率

O(H1) = P(H1) / (1 - P(H1)) = 0.091/(1-0.091)=0.10011
  • 1

再根据合成公式计算H1的后验几率

   O(H1| S1,S2)= (O(H1| S1) / O(H1)) × (O(H1| S2) / O(H1)) × O(H1) 

            = (0.15807 / 0.10011) × (0.34163) / 0.10011) × 0.10011

            = 0.53942
  • 1
  • 2
  • 3
  • 4
  • 5

再将该后验几率转换为后验概率

P(H1| S1,S2) = O(H1| S1,S2) / (1+ O(H1| S1,S2))

        = 0.35040
  • 1
  • 2
  • 3

(4) 由r3计算O(H2| S3)

  先把H2的先验概率更新为在E3下的后验概率P(H2| E3)

      P(H2| E3)=(LS3 × P(H2)) / ((LS3-1) × P(H2)+1)

             =(200 × 0.01) / ((200 -1) × 0.01 +1)

             =0.09569
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

由于P(E3|S3)=0.36 < P(E3),使用P(H | S)公式的前半部分,得到在当前观察S3下的后验概率P(H2| S3)和后验几率O(H2| S3)

   P(H2| S3) = P(H2 | ¬ E3) + (P(H2) – P(H2| ¬E3)) / P(E3)) × P(E3| S3) 
  • 1

由当E3肯定不存在时有

   P(H2 | ¬ E3) = LN3 × P(H2) / ((LN3-1) × P(H2) +1)

            = 0.001 × 0.01 / ((0.001 - 1) × 0.01 + 1)

            = 0.00001
  • 1
  • 2
  • 3
  • 4
  • 5

因此有

P(H2| S3) = P(H2 | ¬ E3) + (P(H2) – P(H2| ¬E3)) / P(E3)) × P(E3| S3)

      =0.00001+((0.01-0.00001) / 0.6) × 0.36

      =0.00600

O(H2| S3) = P(H2| S3) / (1 - P(H2| S3))

           =0.00604
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

(5) 由r4计算O(H2| H1)

  先把H2的先验概率更新为在H1下的后验概率P(H2| H1)

      P(H2| H1)=(LS4 × P(H2)) / ((LS4-1) × P(H2)+1)

             =(50 × 0.01) / ((50 -1) × 0.01 +1)

             =0.33557
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

由于P(H1| S1,S2)=0.35040 > P(H1),使用P(H | S)公式的后半部分,得到在当前观察S1,S2下H2的后验概率P(H2| S1,S2)和后验几率O(H2| S1,S2)

   P(H2| S1,S2) = P(H2) + ((P(H2| H1) – P(H2)) / (1 - P(H1))) × (P(H1| S1,S2) – P(H1))

           = 0.01 + (0.33557 –0.01) / (1 – 0.091)) × (0.35040 – 0.091)

           =0.10291

   O(H2| S1,S2) = P(H2| S1, S2) / (1 - P(H2| S1, S2))

           =0.10291/ (1 - 0.10291) = 0.11472
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

(6) 计算O(H2| S1,S2,S3)和P(H2| S1,S2,S3)

先将H2的先验概率转换为先验几率

O(H2) = P(H2) / (1 - P(H2) )= 0.01 / (1-0.01)=0.01010
  • 1

再根据合成公式计算H1的后验几率

   O(H2| S1,S2,S3)= (O(H2| S1,S2) / O(H2)) × (O(H2| S3) / O(H2)) ×O(H2) 

            = (0.11472 / 0.01010) × (0.00604) / 0.01010) × 0.01010

            =0.06832
  • 1
  • 2
  • 3
  • 4
  • 5

再将该后验几率转换为后验概率

P(H2| S1,S2,S3) = O(H1| S1,S2,S3) / (1+ O(H1| S1,S2,S3))

        = 0.06832 / (1+ 0.06832) = 0.06395
  • 1
  • 2
  • 3

可见,H2原来的概率是0.01,经过上述推理后得到的后验概率是0.06395,它相当于先验概率的6倍多。

3 . 极大后验概率

某学校,所有的男生都穿裤子,而女生当中,一半穿裤子,一半穿裙子。男女比例70%的可能性是4:6,有20%可能性是1:1,有10%可能性是6:4,问一个穿裤子的人是男生的概率有多大?

Answer:

  • 假设情况h1,其发生概率P(h1) = 7/10,此时男女比例4:6,则 P(pants): P(skirt) =7:3
    在这里插入图片描述

  • 假设情况h2,其发生概率P(h2) = 2/10,此时男女比例1:1,则 P(pants): P(skirt) = 3:1
    在这里插入图片描述

  • 假设情况h3,其发生概率P(h3) = 1/10,此时男女比例6:4,则 P(pants): P(skirt) = 8: 2
    在这里插入图片描述

  • 由MAP可得
    在这里插入图片描述

4 . 决策树

设样本集合如下表格,其中A、B、C是F的属性,请根据信息增益标准(ID3算法),画出F的决策树。其中
在这里插入图片描述
在这里插入图片描述

Answer:
在这里插入图片描述
F的决策树:
在这里插入图片描述

5 . 人工神经网络

阈值感知器可以用来执行很多逻辑函数,说明它对二进制逻辑函数与(AND)和或(OR)的实现过程。

Answer:

  • 与(AND)操作的真值表如下表所示:
    在这里插入图片描述

与操作可用下图所示的阈值感知器表示:
在这里插入图片描述

v = w1x1+w2x2+b

= x1+x2 -1.5

If x1=x2=1 , then v = 0.5, and y=1

If x1 = 0,and x2=1 , then v= -0.5 , and y=0

If x1 = 1,and x2=0 , then v= -0.5 , and y=0

If x1=x2=0, then v= -1.5 , and y=0

  • 或(OR)操作的真值表如下所示:
    在这里插入图片描述

或操作可用下图所示的阈值感知器表示:
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/674880
推荐阅读
相关标签
  

闽ICP备14008679号