赞
踩
AIGC 011-SAM第一个图像分割大模型-分割一切!
这篇论文介绍了 Segment Anything (SA) 项目,这是一个全新的图像分割任务、模型和数据集。SA 项目是一个具有里程碑意义的工作,它为图像分割领域带来了新的机遇和挑战。该项目的模型和数据集将推动计算机视觉基础模型的研究,为构建更强大、更通用的图像分割模型奠定基础。
Segment Anything (SA) 项目提出了一种新的图像分割任务、模型和数据集。研究人员利用一个高效的模型,在数据收集循环中构建了迄今为止最大的分割数据集,包含超过 10 亿个掩码,覆盖了 1100 万张经过许可和尊重隐私的图像。该模型被设计并训练成可提示的,因此它可以零样本迁移到新的图像分布和任务中。对多个任务的评估表明,该模型的零样本性能令人印象深刻,通常可以与或甚至超过先前完全监督的结果。为了促进计算机视觉基础模型的研究,Segment Anything 模型 (SAM) 和包含 10 亿个掩码和 1100 万张图像的对应数据集 (SA-1B) 已发布在 https://segment-anything.com 上。
CLIP-diffusion-SAM-LRM再有就是一些多模态大模型,可以发现大模型的能力开始在开始在不同的视觉任务上开始涌现。
从目前来看无论2d还是3d方面都是大力出奇迹。在十亿级别的数据上2d大模型能力得到很强的展现。在这一点上3d数据集就差很多,一方面数据量有限,另外一方面3d数据集都是合成数据集,对模型泛化能力还是有限制。
接下来我们想分享的3d理解的论文,无论是nerf基还是Gaussian基都是以CLIP或者SAM为基础。这真的是一件很酷的事情。
论文链接
github
objaverse
这个可以去官网去体验。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。