当前位置:   article > 正文

yolov5(v7.0)网络修改实践一:集成YOLOX的backbone(CSPDarknet和Pafpn)到yolov5(v7.0)框架中_pconv引用到yolo中

pconv引用到yolo中

yolov5太好用了,无论是实际做工程还是学习研究,yolov5都比较好上手,而且现在工业界yolov5也应用广泛。但是,作为学习研究,有不少在yolov5之后提出的涨点算法,还是有价值进行研究的,也便于跟进当下研究进展。于是打算在yolov5框架上集成一些优秀算法进行学习研究。

这次选的是在 yolov5后面提出的YOLOX,具体算法内容就不进行分析解读了,yolox是旷世提出的yolo系列的目标检测算法,应用的tricks比较多,采用了Darknet骨干网络,pafpn网络的特征融合方式,decoupledhead的双分支解耦合头,无锚框的anchor-free算法,还有mosaic等数据增强方式。这里先把yolox的特征提取阶段网络,及backbone和neck对应的CSPDarknet和Pafpn集成到yolov5中。

1、首先是yolox的网络配置

如下是GitHub下载的yolox的官方代码,可以依次看到,yolox的backbone和head分别默认使用YOLOPAFPN和YOLOXHead,这里先看backbone 部分
在这里插入图片描述
如下是YOLOPAFPN的代码,通过这个代码可以了解这个模块是怎么定义的,包含什么结构,输入输出信息等
在这里插入图片描述
包含的结构内容看__init__()函数,这些结构如何组成YOLOPAFPN看forward函数

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
# Copyright (c) Megvii Inc. All rights reserved.

import torch
import torch.nn as nn

from .darknet import CSPDarknet
from .network_blocks import BaseConv, CSPLayer, DWConv


class YOLOPAFPN(nn.Module):
    """
    YOLOv3 model. Darknet 53 is the default backbone of this model.
    """

    def __init__(
        self,
        depth=1.0,
        width=1.0,
        in_features=("dark3", "dark4", "dark5"),
        in_channels=[256, 512, 1024],
        depthwise=False,
        act="silu",
    ):
        super().__init__()
        self.backbone = CSPDarknet(depth, width, depthwise=depthwise, act=act)
        self.in_features = in_features
        self.in_channels = in_channels
        Conv = DWConv if depthwise else BaseConv

        self.upsample = nn.Upsample(scale_factor=2, mode="nearest")
        self.lateral_conv0 = BaseConv(
            int(in_channels[2] * width), int(in_channels[1] * width), 1, 1, act=act
        )
        self.C3_p4 = CSPLayer(
            int(2 * in_channels[1] * width),
            int(in_channels[1] * width),
            round(3 * depth),
            False,
            depthwise=depthwise,
            act=act,
        )  # cat

        self.reduce_conv1 = BaseConv(
            int(in_channels[1] * width), int(in_channels[0] * width), 1, 1, act=act
        )
        self.C3_p3 = CSPLayer(
            int(2 * in_channels[0] * width),
            int(in_channels[0] * width),
            round(3 * depth),
            False,
            depthwise=depthwise,
            act=act,
        )

        # bottom-up conv
        self.bu_conv2 = Conv(
            int(in_channels[0] * width), int(in_channels[0] * width), 3, 2, act=act
        )
        self.C3_n3 = CSPLayer(
            int(2 * in_channels[0] * width),
            int(in_channels[1] * width),
            round(3 * depth),
            False,
            depthwise=depthwise,
            act=act,
        )

        # bottom-up conv
        self.bu_conv1 = Conv(
            int(in_channels[1] * width), int(in_channels[1] * width), 3, 2, act=act
        )
        self.C3_n4 = CSPLayer(
            int(2 * in_channels[1] * width),
            int(in_channels[2] * width),
            round(3 * depth),
            False,
            depthwise=depthwise,
            act=act,
        )

    def forward(self, input):
        #  backbone
        out_features = self.backbone(input)
        features = [out_features[f] for f in self.in_features]
        [x2, x1, x0] = features

        fpn_out0 = self.lateral_conv0(x0)  # 1024->512/32
        f_out0 = self.upsample(fpn_out0)  # 512/16
        f_out0 = torch.cat([f_out0, x1], 1)  # 512->1024/16
        f_out0 = self.C3_p4(f_out0)  # 1024->512/16

        fpn_out1 = self.reduce_conv1(f_out0)  # 512->256/16
        f_out1 = self.upsample(fpn_out1)  # 256/8
        f_out1 = torch.cat([f_out1, x2], 1)  # 256->512/8
        pan_out2 = self.C3_p3(f_out1)  # 512->256/8

        p_out1 = self.bu_conv2(pan_out2)  # 256->256/16
        p_out1 = torch.cat([p_out1, fpn_out1], 1)  # 256->512/16
        pan_out1 = self.C3_n3(p_out1)  # 512->512/16

        p_out0 = self.bu_conv1(pan_out1)  # 512->512/32
        p_out0 = torch.cat([p_out0, fpn_out0], 1)  # 512->1024/32
        pan_out0 = self.C3_n4(p_out0)  # 1024->1024/32

        outputs = (pan_out2, pan_out1, pan_out0)
        return outputs

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109

forward函数决定定义模块的结构。从上forward函数可以发现,YOLOPAFPN还需先经过一个backbone:CSPDarknet得到输出后再进入特征融合阶段,从forward函数也就可以了解到YOLOPAFPN的整体结构了。如下是找的YOLOX的网络结构图,红框内即是YOLOPAFPN的结构
--c
根据导入的库可以找到CSPDarknet和相关基础模块的定义代码,分别在models文件夹下的darknet.py和network_blocks.py下
在这里插入图片描述

2、模块迁移,匹配yolov5框架

在了解清楚yolox的YOLOPAFPN的结构后,接下来就可以进行模块的迁移。其实我们已经获得YOLOPAFPN的代码了,直接调过来用不就可以吗?可能有人会有这种疑问,其实我也想这么操作,这样多省事啊,一旦有什么新的开源算法直接拿过来调用就行了。

鉴于yolov5的优越性,作者实在是喜欢yolov5的框架,且为了直观的对比所谓的先进算法带来的涨点,就打算迁移到yolov5框架。另一方面,如果yolov5本身就支持这种直接调用的网络构建那也可以很省事。事实上是yolov5有自己的网络构建方式,我们需要根据yolov5框架的标准来把网络迁移进来。

前面我已经分析过yolov5的网络构建方法和训练过程,这里就不细述了,主要是通过配置参数cfg传入网络的结构参数,如yolov5s.yaml,再通过models/yolo.py中的parse_model()函数来串联网络结构。

**backbone的前3个C3数量对应yolov5s.yaml的配置369分别除了3,变为1/3后的123,和模型深度参数有关depth_multiple: 0.33  model depth multiple**                  
层数,第几层      from  n    params  module                                  arguments
               ch[-1]  数量  参数量 模块名称(m)                           网络结构参数,输入维度,输出维度,卷积核大小,卷积步长
  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]              
  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                
  2                -1  1     18816  models.common.C3                        [64, 64, 1]
  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               
  4                -1  2    115712  models.common.C3                        [128, 128, 2]                 
  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              
  6                -1  3    625152  models.common.C3                        [256, 256, 3] 
  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              
  8                -1  1   1182720  models.common.C3                        [512, 512, 1]                 
  9                -1  1    656896  models.common.SPPF                      [512, 512, 5]                 
 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              
 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 12           [-1, 6]  1         0  models.common.Concat                    [1]                           
 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]          
 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              
 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 16           [-1, 4]  1         0  models.common.Concat                    [1]                           
 17                -1  1     90880  models.common.C3                        [256, 128, 1, False]          
 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              
 19          [-1, 14]  1         0  models.common.Concat                    [1]                           
 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]          
 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              
 22          [-1, 10]  1         0  models.common.Concat                    [1]                           
 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          
 24      [17, 20, 23]  1     16182  models.yolo.Detect                      [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

从上可见,yolov5的网络构建是基于一个个基础模块(如Conv、C3等)串联起来实例化得到网络结构,一层层模块标识层数来使首尾相连的模块的输入输出参数变换一致。我改了一个对应yolov5s的版本:
在这里插入图片描述
与yolov5s类似,yolox-s也有控制网络参数量的参数,在网络构建的时候可以一同考虑。
在这里插入图片描述
如上是我构建好的YOLOPAFPN网络训练时打印出来的模块信息,最终成功训练上了
如下是我的yaml配置文件:

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8 anchor_height,anchor_width,每个尺度设置三种锚框,使用时除以下采样倍数
  - [30,61, 62,45, 59,119]  # P4/16 anchor_height,anchor_width,每个尺度设置三种锚框,使用时除以下采样倍数
  - [116,90, 156,198, 373,326]  # P5/32 anchor_height,anchor_width,每个尺度设置三种锚框,使用时除以下采样倍数

# YOLOX backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, XFocus, [64, 3]], #3,32 0表示输入、输出以及当前网络层数
   [-1, 1, Dark2, [128,3,2]], #32 64 1
   [-1, 1, Dark3, [256,3,2]], #64 128 2 
   [-1, 1, Dark4, [512,3,2]], #128 256 3
   [-1, 1, Dark5, [1024,3,2]], #256 512 4
   [-1, 1, LarConv0, [512]], #512 256 5
   [-1, 1, nn.Upsample, [None, 2, 'nearest']], #256 256 6 
   [[-1, 3], 1, Concat, [1]], # 256 512  7
   [-1, 1, C3_p4, [512]], #512 256  8
   [-1, 1, RedConv1,[256]], #256 128 9
   [-1, 1, nn.Upsample, [None, 2, 'nearest']], #128, 128 10
   [[-1, 2], 1, Concat, [1]], #128 256 11
   [-1, 1, C3_p3, [256]], #256, 128 12 
   [-1, 1, ButConv2, [256]], #128 128 13
   [[-1, 9], 1, Concat, [1]], #128 256 14
   [-1, 1, C3_n3, [512]], # 256 256 15
   [-1, 1, ButConv1, [512]], #256 256 16
   [[-1, 5], 1, Concat, [1]], #256 512 17
   [-1, 1, C3_n4, [1024]], #512 512 18
  ]

head:
  # yolov5 head
  [
   [[12, 15, 18], 1, Detect, [nc, anchors]], 
  ]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

以上模块XFocus、Dark2-Dark5、LarConv0、C3_p4、RedConv1、ButConv1等的py代码,建议加在common.py中

######################### YOLOX ###########################
def get_activation(name="silu", inplace=True):
    if name == "silu":
        module = nn.SiLU(inplace=inplace)
    elif name == "relu":
        module = nn.ReLU(inplace=inplace)
    elif name == "lrelu":
        module = nn.LeakyReLU(0.1, inplace=inplace)
    else:
        raise AttributeError("Unsupported act type: {}".format(name))
    return module

class BottleneckX(nn.Module):
    # Standard bottleneck
    def __init__(
        self,
        in_channels,
        out_channels,
        shortcut=True,
        expansion=0.5,
        depthwise=False,
        act="silu",
    ):
        super().__init__()
        hidden_channels = int(out_channels * expansion)
        Conv = DWConv if depthwise else BaseConv
        self.conv1 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act)
        self.conv2 = Conv(hidden_channels, out_channels, 3, stride=1, act=act)
        self.use_add = shortcut and in_channels == out_channels

    def forward(self, x):
        y = self.conv2(self.conv1(x))
        if self.use_add:
            y = y + x
        return y


class BaseConv(nn.Module):
    """A Conv2d -> Batchnorm -> silu/leaky relu block"""

    def __init__(
        self, in_channels, out_channels, ksize, stride, groups=1, bias=False, act="silu"
    ):
        super().__init__()
        # same padding
        pad = (ksize - 1) // 2
        self.conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size=ksize,
            stride=stride,
            padding=pad,
            groups=groups,
            bias=bias,
        )
        self.bn = nn.BatchNorm2d(out_channels)
        self.act = get_activation(act, inplace=True)

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def fuseforward(self, x):
        return self.act(self.conv(x))
    
class DWConv(nn.Module):
    """Depthwise Conv + Conv"""

    def __init__(self, in_channels, out_channels, ksize, stride=1, act="silu"):
        super().__init__()
        self.dconv = BaseConv(
            in_channels,
            in_channels,
            ksize=ksize,
            stride=stride,
            groups=in_channels,
            act=act,
        )
        self.pconv = BaseConv(
            in_channels, out_channels, ksize=1, stride=1, groups=1, act=act
        )

    def forward(self, x):
        x = self.dconv(x)
        return self.pconv(x)

class CSPLayer(nn.Module):
    """C3 in yolov5, CSP Bottleneck with 3 convolutions"""

    def __init__(
        self,
        in_channels,
        out_channels,
        n=1,
        shortcut=True,
        expansion=0.5,
        depthwise=False,
        act="silu",
    ):
        """
        Args:
            in_channels (int): input channels.
            out_channels (int): output channels.
            n (int): number of Bottlenecks. Default value: 1.
        """
        # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        hidden_channels = int(out_channels * expansion)  # hidden channels
        self.conv1 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act)
        self.conv2 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=act)
        self.conv3 = BaseConv(2 * hidden_channels, out_channels, 1, stride=1, act=act)
        module_list = [
            BottleneckX(
                hidden_channels, hidden_channels, shortcut, 1.0, depthwise, act=act
            )
            for _ in range(n)
        ]
        self.m = nn.Sequential(*module_list)

    def forward(self, x):
        x_1 = self.conv1(x)
        x_2 = self.conv2(x)
        x_1 = self.m(x_1)
        x = torch.cat((x_1, x_2), dim=1)
        return self.conv3(x)

class SPPBottleneck(nn.Module):
    """Spatial pyramid pooling layer used in YOLOv3-SPP"""

    def __init__(
        self, in_channels, out_channels, kernel_sizes=(5, 9, 13), activation="silu"
    ):
        super().__init__()
        hidden_channels = in_channels // 2
        self.conv1 = BaseConv(in_channels, hidden_channels, 1, stride=1, act=activation)
        self.m = nn.ModuleList(
            [
                nn.MaxPool2d(kernel_size=ks, stride=1, padding=ks // 2)
                for ks in kernel_sizes
            ]
        )
        conv2_channels = hidden_channels * (len(kernel_sizes) + 1)
        self.conv2 = BaseConv(conv2_channels, out_channels, 1, stride=1, act=activation)

    def forward(self, x):
        x = self.conv1(x)
        x = torch.cat([x] + [m(x) for m in self.m], dim=1)
        x = self.conv2(x)
        return x

class XFocus(nn.Module):
    """Focus width and height information into channel space."""

    def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu"):
        super().__init__()
        self.conv = BaseConv(in_channels * 4, out_channels, ksize, stride, act=act)

    def forward(self, x):
        # shape of x (b,c,w,h) -> y(b,4c,w/2,h/2)
        patch_top_left = x[..., ::2, ::2]
        patch_top_right = x[..., ::2, 1::2]
        patch_bot_left = x[..., 1::2, ::2]
        patch_bot_right = x[..., 1::2, 1::2]
        x = torch.cat(
            (
                patch_top_left,
                patch_bot_left,
                patch_top_right,
                patch_bot_right,
            ),
            dim=1,
        )
        return self.conv(x)

class Dark2(nn.Module):
    def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu", depthwise=False):
        super().__init__()
        Conv = DWConv if depthwise else BaseConv
        dep_mul = 0.33
        base_depth = max(round(dep_mul * 3), 1)
        self.dark2 = nn.Sequential(
            Conv(in_channels, in_channels * 2, 3, 2, act=act),
            CSPLayer(
                in_channels * 2,
                in_channels * 2,
                n=base_depth,
                depthwise=depthwise,
                act=act,
            ),
        )

    def forward(self, x):
        return self.dark2(x)

class Dark3(nn.Module):
    # def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu", depthwise=False):
    def __init__(self, in_channels, out_channels, ksize, stride, act="silu", depthwise=False):
        super().__init__()
        Conv = DWConv if depthwise else BaseConv
        dep_mul = 0.33
        base_depth = max(round(dep_mul * 3), 1)
        self.dark3 = nn.Sequential(
            Conv(in_channels, in_channels * 2, 3, 2, act=act),
            CSPLayer(
                in_channels * 2,
                in_channels * 2,
                n=base_depth * 3,
                depthwise=depthwise,
                act=act,
            ),
        )

    def forward(self, x):
        return self.dark3(x)
    
class Dark4(nn.Module):
    def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu", depthwise=False):
        super().__init__()
        Conv = DWConv if depthwise else BaseConv
        dep_mul = 0.33
        base_depth = max(round(dep_mul * 3), 1)
        self.dark4 = nn.Sequential(
            Conv(in_channels , in_channels * 2, 3, 2, act=act),
            CSPLayer(
                in_channels * 2,
                in_channels * 2,
                n=base_depth * 3,
                depthwise=depthwise,
                act=act,
            ),
        )

    def forward(self, x):
        return self.dark4(x)

class Dark5(nn.Module):
    def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu", depthwise=False):
        super().__init__()
        Conv = DWConv if depthwise else BaseConv
        dep_mul = 0.33
        base_depth = max(round(dep_mul * 3), 1)
        self.dark5 = nn.Sequential(
            Conv(in_channels , in_channels * 2, 3, 2, act=act),
            SPPBottleneck(in_channels * 2, in_channels * 2, activation=act),
            CSPLayer(
                in_channels * 2,
                in_channels * 2,
                n=base_depth,
                shortcut=False,
                depthwise=depthwise,
                act=act,
            ),
        )

    def forward(self, x):
        return self.dark5(x)

class LarConv0(nn.Module):
    def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu", depthwise=False):
        super().__init__()
        
        self.lateral_conv0 = BaseConv(
            int(in_channels), int(out_channels), 1, 1, act=act
        )
    
    def forward(self, x):
        return self.lateral_conv0(x)
    
class C3_p4(nn.Module):
    def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu", depthwise=False):
        super().__init__()
        depth = 0.33
        self.c3_p4 = CSPLayer(
            int(in_channels),
            int(out_channels),
            round(3 * depth),
            False,
            depthwise=depthwise,
            act=act,
        )  # cat
    
    def forward(self, x):
        return self.c3_p4(x)

class RedConv1(nn.Module):
    def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu", depthwise=False):
        super().__init__()
        self.reduce_conv1 = BaseConv(
            int(in_channels), out_channels, 1, 1, act=act
        )
    
    def forward(self, x):
        return self.reduce_conv1(x)

class C3_p3(nn.Module):
    def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu", depthwise=False):
        super().__init__()
        depth = 0.33
        self.c3_p3 = CSPLayer(
            int(in_channels),
            int(out_channels),
            round(3 * depth),
            False,
            depthwise=depthwise,
            act=act,
        )  
    
    def forward(self, x):
        return self.c3_p3(x)

class ButConv2(nn.Module):
    def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu", depthwise=False):
        super().__init__()
        self.bu_conv2 = BaseConv(
            int(in_channels), int(in_channels), 3, 2, act=act
        )
    def forward(self, x):
        return self.bu_conv2(x)

class C3_n3(nn.Module):
    def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu", depthwise=False):
        super().__init__()
        depth = 0.33
        self.c3_n3 = CSPLayer(
            int(in_channels),
            int(in_channels),
            round(3 * depth),
            False,
            depthwise=depthwise,
            act=act,
        )
    
    def forward(self, x):
        return self.c3_n3(x)

class ButConv1(nn.Module):
    def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu", depthwise=False):
        super().__init__()
        self.bu_conv1 = BaseConv(
            int(in_channels), int(in_channels), 3, 2, act=act
        )
    def forward(self, x):
        return self.bu_conv1(x)

class C3_n4(nn.Module):
    def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu", depthwise=False):
        super().__init__()
        depth = 0.33
        self.c3_n4 = CSPLayer(
            int(in_channels),
            int(in_channels),
            round(3 * depth),
            False,
            depthwise=depthwise,
            act=act,
        )
    
    def forward(self, x):
        return self.c3_n4(x)
    
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359

这样基本把yolox的backbone的相关模块在yolov5s中实现了,适用于yolov5的网络构建方式。里面主要需要注意模块之间的输入输出对应。

或者你想要验证复现的YOLOPAFPN是否与yolox一致,可以单独把YOLOPAFPN()拎出来,实例化输入输出看网络结构,本人验证后,发现是一致的。

"""
YOLOPAFPN(
  (backbone): CSPDarknet(
    (stem): Focus(
      (conv): BaseConv(
        (conv): Conv2d(12, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
    )
    (dark2): Sequential(
      (0): BaseConv(
        (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (1): CSPLayer(
        (conv1): BaseConv(
          (conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (conv2): BaseConv(
          (conv): Conv2d(64, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (conv3): BaseConv(
          (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (m): Sequential(
          (0): Bottleneck(
            (conv1): BaseConv(
              (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU(inplace=True)
            )
            (conv2): BaseConv(
              (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU(inplace=True)
            )
          )
        )
      )
    )
    (dark3): Sequential(
      (0): BaseConv(
        (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (1): CSPLayer(
        (conv1): BaseConv(
          (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (conv2): BaseConv(
          (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (conv3): BaseConv(
          (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (m): Sequential(
          (0): Bottleneck(
            (conv1): BaseConv(
              (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU(inplace=True)
            )
            (conv2): BaseConv(
              (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU(inplace=True)
            )
          )
          (1): Bottleneck(
            (conv1): BaseConv(
              (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU(inplace=True)
            )
            (conv2): BaseConv(
              (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU(inplace=True)
            )
          )
          (2): Bottleneck(
            (conv1): BaseConv(
              (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU(inplace=True)
            )
            (conv2): BaseConv(
              (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU(inplace=True)
            )
          )
        )
      )
    )
    (dark4): Sequential(
      (0): BaseConv(
        (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (1): CSPLayer(
        (conv1): BaseConv(
          (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (conv2): BaseConv(
          (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (conv3): BaseConv(
          (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (m): Sequential(
          (0): Bottleneck(
            (conv1): BaseConv(
              (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU(inplace=True)
            )
            (conv2): BaseConv(
              (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU(inplace=True)
            )
          )
          (1): Bottleneck(
            (conv1): BaseConv(
              (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU(inplace=True)
            )
            (conv2): BaseConv(
              (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU(inplace=True)
            )
          )
          (2): Bottleneck(
            (conv1): BaseConv(
              (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU(inplace=True)
            )
            (conv2): BaseConv(
              (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU(inplace=True)
            )
          )
        )
      )
    )
    (dark5): Sequential(
      (0): BaseConv(
        (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (act): SiLU(inplace=True)
      )
      (1): SPPBottleneck(
        (conv1): BaseConv(
          (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (m): ModuleList(
          (0): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)
          (1): MaxPool2d(kernel_size=9, stride=1, padding=4, dilation=1, ceil_mode=False)
          (2): MaxPool2d(kernel_size=13, stride=1, padding=6, dilation=1, ceil_mode=False)
        )
        (conv2): BaseConv(
          (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
      (2): CSPLayer(
        (conv1): BaseConv(
          (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (conv2): BaseConv(
          (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (conv3): BaseConv(
          (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (m): Sequential(
          (0): Bottleneck(
            (conv1): BaseConv(
              (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
              (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU(inplace=True)
            )
            (conv2): BaseConv(
              (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
              (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
              (act): SiLU(inplace=True)
            )
          )
        )
      )
    )
  )
  (upsample): Upsample(scale_factor=2.0, mode=nearest)
  (lateral_conv0): BaseConv(
    (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU(inplace=True)
  )
  (C3_p4): CSPLayer(
    (conv1): BaseConv(
      (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (conv2): BaseConv(
      (conv): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (conv3): BaseConv(
      (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (m): Sequential(
      (0): Bottleneck(
        (conv1): BaseConv(
          (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (conv2): BaseConv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
    )
  )
  (reduce_conv1): BaseConv(
    (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
    (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU(inplace=True)
  )
  (C3_p3): CSPLayer(
    (conv1): BaseConv(
      (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (conv2): BaseConv(
      (conv): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (conv3): BaseConv(
      (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (m): Sequential(
      (0): Bottleneck(
        (conv1): BaseConv(
          (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (conv2): BaseConv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
    )
  )
  (bu_conv2): BaseConv(
    (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU(inplace=True)
  )
  (C3_n3): CSPLayer(
    (conv1): BaseConv(
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (conv2): BaseConv(
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (conv3): BaseConv(
      (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (m): Sequential(
      (0): Bottleneck(
        (conv1): BaseConv(
          (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (conv2): BaseConv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
    )
  )
  (bu_conv1): BaseConv(
    (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU(inplace=True)
  )
  (C3_n4): CSPLayer(
    (conv1): BaseConv(
      (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (conv2): BaseConv(
      (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (conv3): BaseConv(
      (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU(inplace=True)
    )
    (m): Sequential(
      (0): Bottleneck(
        (conv1): BaseConv(
          (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
        (conv2): BaseConv(
          (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU(inplace=True)
        )
      )
    )
  )
)



"""
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378

3、成功训练,完成YOLOPAFPN复现

在成功训练前,还有一步,即把新加入的模块加入到网络构建函数中,不然无法识别构建的网络模块导致无法训练,网络构建函数在yolo.py中的parse_model(),修改如下:

def parse_model(d, ch):  # model_dict, input_channels(3)
    # Parse a YOLOv5 model.yaml dictionary
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        LOGGER.info(f"{colorstr('activation:')} {act}")  # print
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            with contextlib.suppress(NameError):
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in {
                Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, XFocus, Dark2, Dark3, Dark4, Dark5, LarConv0, C3_p4,RedConv1, C3_p3,ButConv2,C3_n3,C3_n4,ButConv1}:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        # TODO: channel, gw, gd
        elif m in {Detect, Segment}:
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
            if m is Segment:
                args[3] = make_divisible(args[3] * gw, 8)
            # import ipdb;ipdb.set_trace()
        elif m in {DetectDcoupleHead}:
            """args是yaml配置文件的字典中每行的列表里模块后的参数"""
            # import ipdb;ipdb.set_trace()
            args.append([ch[x] for x in f])#append导致输入维度参数在最后一个位置
            if isinstance(args[1], int):  # 锚框 number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
            # import ipdb;ipdb.set_trace()
            args[2] = gw
        elif m in {DetectXHead}:
            # args.append([int(ch[x] * gw) for x in f])
            # print(args)
            args.append([ch[x] for x in f])
            args[1] = gw
            # print(args)
            # xx = args
            # import ipdb;ipdb.set_trace()
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        else:
            c2 = ch[f]

        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76

基于上述工作,再完善一下相关模块的引用,就完成了在yolov5中复现yolox的backbone:YOLOPAFPN模块
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/684462
推荐阅读
相关标签
  

闽ICP备14008679号