赞
踩
情感分析(Sentiment Analysis),也称为情感分类,属于自然语言处理(Natural Language Processing,NLP)领域的一个分支任务,随着互联网的发展而兴起。多数情况下该任务分析一个文本所呈现的信息是正面、负面或者中性,也有一些研究会区分得更细,例如在正负极性中再进行分级,区分不同情感强度.
文本情感分析(Sentiment Analysis)是自然语言处理(NLP)方法中常见的应用,也是一个有趣的基本任务,尤其是以提炼文本情绪内容为目的的分类。它是对带有情感色彩的主观性文本进行分析、处理、归纳和推理的过程。
情感分析中的情感极性(倾向)分析。所谓情感极性分析,指的是对文本进行褒义、贬义、中性的判断。在大多应用场景下,只分为两类。例如对于“喜爱”和“厌恶”这两个词,就属于不同的情感倾向。
本文将采用LSTM模型,训练一个能够识别文本postive, negative情感的分类器。
RNN网络因为使用了单词的序列信息,所以准确率要比前向传递神经网络要高。
网络结构:
首先,将单词传入 embedding层,之所以使用嵌入层,是因为单词数量太多,使用嵌入式词向量来表示单词更有效率。在这里我们使用word2vec方式来实现,而且特别神奇的是,我们只需要加入嵌入层即可,网络会自主学习嵌入矩阵
参考下图
通过embedding 层, 新的单词表示传入 LSTM cells。这将是一个递归链接网络,所以单词的序列信息会在网络之间传递。最后, LSTM cells连接一个sigmoid output layer 。 使用sigmoid可以预测该文本是 积极的 还是 消极的 情感。输出层只有一个单元节点(使用sigmoid激活)。
只需要关注最后一个sigmoid的输出,损失只计算最后一步的输出和标签的差异。
文件说明:
(1)reviews.txt 是原始文本文件,共25000条,一行是一篇英文电影影评文本
(2)labels.txt 是标签文件,共25000条,一行是一个标签,positive 或者 negative
我们要去除标点符号。 同时,去除不同文本之间有分隔符号 \n,我们先把\n当成分隔符号,分割所有评论。 然后在将所有评论再次连接成为一个大的文本。
- import numpy as np
-
- # read data from text files
- with open('./data/reviews.txt', 'r') as f:
- reviews = f.read()
- with open('./data/labels.txt', 'r') as f:
- labels = f.read()
-
- print(reviews[:1000])
- print()
- print(labels[:20])
- from string import punctuation
-
- # get rid of punctuation
- reviews = reviews.lower() # lowercase, standardize
- all_text = ''.join([c for c in reviews if c not in punctuation])
-
- # split by new lines and spaces
- reviews_split = all_text.split('\n')
- all_text = ' '.join(reviews_split)
-
- # create a list of words
- words = all_text.split()
-
embedding lookup要求输入的网络数据是整数。最简单的方法就是创建数据字典:{单词:整数}。然后将评论全部一一对应转换成整数,传入网络。
- # feel free to use this import
- from collections import Counter
-
- ## Build a dictionary that maps words to integers
- counts = Counter(words)
- vocab = sorted(counts, key=counts.get, reverse=True)
- vocab_to_int = {word: ii for ii, word in enumerate(vocab, 1)}
-
- ## use the dict to tokenize each review in reviews_split
- ## store the tokenized reviews in reviews_ints
- reviews_ints = []
- for review in reviews_split:
- reviews_ints.append([vocab_to_int[word] for word in review.split()])
-
-
-
- # stats about vocabulary
- print('Unique words: ', len((vocab_to_int))) # should ~ 74000+
- print()
-
- # print tokens in first review
- print('Tokenized review: \n', reviews_ints[:1])
补充enumerate函数用法:
在enumerate函数内写上int整型数字,则以该整型数字作为起始去迭代生成结果。
将标签 “positive” or "negative"转换为数值。
- # 1=positive, 0=negative label conversion
- labels_split = labels.split('\n')
- encoded_labels = np.array([1 if label == 'positive' else 0 for label in labels_split])
-
- # outlier review stats
- review_lens = Counter([len(x) for x in reviews_ints])
- print("Zero-length reviews: {}".format(review_lens[0]))
- print("Maximum review length: {}".format(max(review_lens)))
消除长度为0的行
- print('Number of reviews before removing outliers: ', len(reviews_ints))
-
- ## remove any reviews/labels with zero length from the reviews_ints list.
-
- # get indices of any reviews with length 0
- non_zero_idx = [ii for ii, review in enumerate(reviews_ints) if len(review) != 0]
-
- # remove 0-length reviews and their labels
- reviews_ints = [reviews_ints[ii] for ii in non_zero_idx]
- encoded_labels = np.array([encoded_labels[ii] for ii in non_zero_idx])
-
- print('Number of reviews after removing outliers: ', len(reviews_ints))
将所以句子统一长度为200个单词:
1、评论长度小于200的,我们对其左边填充0
2、对于大于200的,我们只截取其前200个单词
- #选择每个句子长为200
- seq_len = 200
- from tensorflow.contrib.keras import preprocessing
- features = np.zeros((len(reviews_ints),seq_len),dtype=int)
- #将reviews_ints值逐行 赋值给features
- features = preprocessing.sequence.pad_sequences(reviews_ints,200)
- features.shape
或者
- def pad_features(reviews_ints, seq_length):
- ''' Return features of review_ints, where each review is padded with 0's
- or truncated to the input seq_length.
- '''
-
- # getting the correct rows x cols shape
- features = np.zeros((len(reviews_ints), seq_length), dtype=int)
-
- # for each review, I grab that review and
- for i, row in enumerate(reviews_ints):
- features[i, -len(row):] = np.array(row)[:seq_length]
-
- return features
-
-
-
- # Test your implementation!
-
- seq_length = 200
-
- features = pad_features(reviews_ints, seq_length=seq_length)
-
- ## test statements - do not change - ##
- assert len(features)==len(reviews_ints), "Your features should have as many rows as reviews."
- assert len(features[0])==seq_length, "Each feature row should contain seq_length values."
-
- # print first 10 values of the first 30 batches
- print(features[:30,:10])
- split_frac = 0.8
-
- ## split data into training, validation, and test data (features and labels, x and y)
-
- split_idx = int(len(features)*split_frac)
- train_x, remaining_x = features[:split_idx], features[split_idx:]
- train_y, remaining_y = encoded_labels[:split_idx], encoded_labels[split_idx:]
-
- test_idx = int(len(remaining_x)*0.5)
- val_x, test_x = remaining_x[:test_idx], remaining_x[test_idx:]
- val_y, test_y = remaining_y[:test_idx], remaining_y[test_idx:]
-
- ## print out the shapes of your resultant feature data
- print("\t\t\tFeature Shapes:")
- print("Train set: \t\t{}".format(train_x.shape),
- "\nValidation set: \t{}".format(val_x.shape),
- "\nTest set: \t\t{}".format(test_x.shape))
或
- from sklearn.model_selection import ShuffleSplit
- ss = ShuffleSplit(n_splits=1,test_size=0.2,random_state=0)
- for train_index,test_index in ss.split(np.array(reviews_ints)):
- train_x = features[train_index]
- train_y = labels[train_index]
- test_x = features[test_index]
- test_y = labels[test_index]
-
- print("\t\t\tFeature Shapes:")
- print("Train set: \t\t{}".format(train_x.shape),
- "\nTrain_Y set: \t{}".format(train_y.shape),
- "\nTest set: \t\t{}".format(test_x.shape))
- import torch
- from torch.utils.data import TensorDataset, DataLoader
-
- # create Tensor datasets
- train_data = TensorDataset(torch.from_numpy(train_x), torch.from_numpy(train_y))
- valid_data = TensorDataset(torch.from_numpy(val_x), torch.from_numpy(val_y))
- test_data = TensorDataset(torch.from_numpy(test_x), torch.from_numpy(test_y))
-
- # dataloaders
- batch_size = 50
-
- # make sure the SHUFFLE your training data
- train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size)
- valid_loader = DataLoader(valid_data, shuffle=True, batch_size=batch_size)
- test_loader = DataLoader(test_data, shuffle=True, batch_size=batch_size)
- # obtain one batch of training data
- dataiter = iter(train_loader)
- sample_x, sample_y = dataiter.next()
-
- print('Sample input size: ', sample_x.size()) # batch_size, seq_length
- print('Sample input: \n', sample_x)
- print()
- print('Sample label size: ', sample_y.size()) # batch_size
- print('Sample label: \n', sample_y)
1. 判断是否有GPU
- # First checking if GPU is available
- train_on_gpu=torch.cuda.is_available()
-
- if(train_on_gpu):
- print('Training on GPU.')
- else:
- print('No GPU available, training on CPU.')
- import torch.nn as nn
-
- class SentimentRNN(nn.Module):
- """
- The RNN model that will be used to perform Sentiment analysis.
- """
-
- def __init__(self, vocab_size, output_size, embedding_dim, hidden_dim, n_layers, bidirectional=True, drop_prob=0.5):
- """
- Initialize the model by setting up the layers.
- """
- super(SentimentRNN, self).__init__()
-
- self.output_size = output_size
- self.n_layers = n_layers
- self.hidden_dim = hidden_dim
- self.bidirectional = bidirectional
-
- # embedding and LSTM layers
- self.embedding = nn.Embedding(vocab_size, embedding_dim)
- self.lstm = nn.LSTM(embedding_dim, hidden_dim, n_layers,
- dropout=drop_prob, batch_first=True,
- bidirectional=bidirectional)
-
- # dropout layer
- self.dropout = nn.Dropout(0.3)
-
- # linear and sigmoid layers
- if bidirectional:
- self.fc = nn.Linear(hidden_dim*2, output_size)
- else:
- self.fc = nn.Linear(hidden_dim, output_size)
-
- self.sig = nn.Sigmoid()
-
-
- def forward(self, x, hidden):
- """
- Perform a forward pass of our model on some input and hidden state.
- """
- batch_size = x.size(0)
-
- # embeddings and lstm_out
- x = x.long()
- embeds = self.embedding(x)
- lstm_out, hidden = self.lstm(embeds, hidden)
-
- # if bidirectional:
- # lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim*2)
- # else:
- # lstm_out = lstm_out.contiguous().view(-1, self.hidden_dim)
-
- # dropout and fully-connected layer
- out = self.dropout(lstm_out)
- out = self.fc(out)
- # sigmoid function
- sig_out = self.sig(out)
-
- # reshape to be batch_size first
- sig_out = sig_out.view(batch_size, -1)
- sig_out = sig_out[:, -1] # get last batch of labels
-
- # return last sigmoid output and hidden state
- return sig_out, hidden
-
-
- def init_hidden(self, batch_size):
- ''' Initializes hidden state '''
- # Create two new tensors with sizes n_layers x batch_size x hidden_dim,
- # initialized to zero, for hidden state and cell state of LSTM
- weight = next(self.parameters()).data
-
- number = 1
- if self.bidirectional:
- number = 2
-
- if (train_on_gpu):
- hidden = (weight.new(self.n_layers*number, batch_size, self.hidden_dim).zero_().cuda(),
- weight.new(self.n_layers*number, batch_size, self.hidden_dim).zero_().cuda()
- )
- else:
- hidden = (weight.new(self.n_layers*number, batch_size, self.hidden_dim).zero_(),
- weight.new(self.n_layers*number, batch_size, self.hidden_dim).zero_()
- )
-
- return hidden
是否使用双向LSTM(在测试集上效果更好一些)
- # Instantiate the model w/ hyperparams
- vocab_size = len(vocab_to_int)+1 # +1 for the 0 padding + our word tokens
- output_size = 1
- embedding_dim = 400
- hidden_dim = 256
- n_layers = 2
- bidirectional = False #这里为True,为双向LSTM
-
- net = SentimentRNN(vocab_size, output_size, embedding_dim, hidden_dim, n_layers, bidirectional)
-
- print(net)
- # loss and optimization functions
- lr=0.001
-
- criterion = nn.BCELoss()
- optimizer = torch.optim.Adam(net.parameters(), lr=lr)
-
-
- # training params
-
- epochs = 4 # 3-4 is approx where I noticed the validation loss stop decreasing
-
- print_every = 100
- clip=5 # gradient clipping
-
- # move model to GPU, if available
- if(train_on_gpu):
- net.cuda()
-
- net.train()
- # train for some number of epochs
- for e in range(epochs):
- # initialize hidden state
- h = net.init_hidden(batch_size)
- counter = 0
-
- # batch loop
- for inputs, labels in train_loader:
- counter += 1
-
- if(train_on_gpu):
- inputs, labels = inputs.cuda(), labels.cuda()
-
- # Creating new variables for the hidden state, otherwise
- # we'd backprop through the entire training history
- h = tuple([each.data for each in h])
- # zero accumulated gradients
- net.zero_grad()
-
- # get the output from the model
- output, h = net(inputs, h)
-
- # calculate the loss and perform backprop
- loss = criterion(output.squeeze(), labels.float())
- loss.backward()
- # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
- nn.utils.clip_grad_norm_(net.parameters(), clip)
- optimizer.step()
-
- # loss stats
- if counter % print_every == 0:
- # Get validation loss
- val_h = net.init_hidden(batch_size)
- val_losses = []
- net.eval()
- for inputs, labels in valid_loader:
-
- # Creating new variables for the hidden state, otherwise
- # we'd backprop through the entire training history
- val_h = tuple([each.data for each in val_h])
-
- if(train_on_gpu):
- inputs, labels = inputs.cuda(), labels.cuda()
-
- output, val_h = net(inputs, val_h)
- val_loss = criterion(output.squeeze(), labels.float())
-
- val_losses.append(val_loss.item())
-
- net.train()
- print("Epoch: {}/{}...".format(e+1, epochs),
- "Step: {}...".format(counter),
- "Loss: {:.6f}...".format(loss.item()),
- "Val Loss: {:.6f}".format(np.mean(val_losses)))
- # Get test data loss and accuracy
-
- test_losses = [] # track loss
- num_correct = 0
-
- # init hidden state
- h = net.init_hidden(batch_size)
-
- net.eval()
- # iterate over test data
- for inputs, labels in test_loader:
-
- # Creating new variables for the hidden state, otherwise
- # we'd backprop through the entire training history
- h = tuple([each.data for each in h])
-
- if(train_on_gpu):
- inputs, labels = inputs.cuda(), labels.cuda()
-
- # get predicted outputs
- output, h = net(inputs, h)
-
- # calculate loss
- test_loss = criterion(output.squeeze(), labels.float())
- test_losses.append(test_loss.item())
-
- # convert output probabilities to predicted class (0 or 1)
- pred = torch.round(output.squeeze()) # rounds to the nearest integer
-
- # compare predictions to true label
- correct_tensor = pred.eq(labels.float().view_as(pred))
- correct = np.squeeze(correct_tensor.numpy()) if not train_on_gpu else np.squeeze(correct_tensor.cpu().numpy())
- num_correct += np.sum(correct)
-
-
- # -- stats! -- ##
- # avg test loss
- print("Test loss: {:.3f}".format(np.mean(test_losses)))
-
- # accuracy over all test data
- test_acc = num_correct/len(test_loader.dataset)
- print("Test accuracy: {:.3f}".format(test_acc))
- # negative test review
- test_review_neg = 'The worst movie I have seen; acting was terrible and I want my money back. This movie had bad acting and the dialogue was slow.'
- from string import punctuation
-
- def tokenize_review(test_review):
- test_review = test_review.lower() # lowercase
- # get rid of punctuation
- test_text = ''.join([c for c in test_review if c not in punctuation])
-
- # splitting by spaces
- test_words = test_text.split()
-
- # tokens
- test_ints = []
- test_ints.append([vocab_to_int[word] for word in test_words])
-
- return test_ints
-
- # test code and generate tokenized review
- test_ints = tokenize_review(test_review_neg)
- print(test_ints)
-
-
- # test sequence padding
- seq_length=200
- features = pad_features(test_ints, seq_length)
- print(features)
-
- # test conversion to tensor and pass into your model
- feature_tensor = torch.from_numpy(features)
- print(feature_tensor.size())
- def predict(net, test_review, sequence_length=200):
-
- net.eval()
-
- # tokenize review
- test_ints = tokenize_review(test_review)
-
- # pad tokenized sequence
- seq_length=sequence_length
- features = pad_features(test_ints, seq_length)
-
- # convert to tensor to pass into your model
- feature_tensor = torch.from_numpy(features)
-
- batch_size = feature_tensor.size(0)
-
- # initialize hidden state
- h = net.init_hidden(batch_size)
-
- if(train_on_gpu):
- feature_tensor = feature_tensor.cuda()
-
- # get the output from the model
- output, h = net(feature_tensor, h)
-
- # convert output probabilities to predicted class (0 or 1)
- pred = torch.round(output.squeeze())
- # printing output value, before rounding
- print('Prediction value, pre-rounding: {:.6f}'.format(output.item()))
-
- # print custom response
- if(pred.item()==1):
- print("Positive review detected!")
- else:
- print("Negative review detected.")
- # positive test review
- test_review_pos = 'This movie had the best acting and the dialogue was so good. I loved it.'
-
- # call function
- seq_length=200 # good to use the length that was trained on
-
- predict(net, test_review_neg, seq_length)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。