赞
踩
Ⅰ. U-Net框架
Ⅱ. 特征融合
U-Net和FCN的区别:
Ⅲ. 输出预测图
上采样结束后,要输出预测图,首先假设分割类数为num_classes,做像素级分类。步骤:
Ⅳ. 构建U-Net网络
U-Net代码:
from numpy.core.defchararray import decode, mod import paddle import numpy as np import paddle.fluid as fluid from paddle.fluid.dygraph import to_variable from paddle.fluid.dygraph import Layer from paddle.fluid.dygraph import Conv2D from paddle.fluid.dygraph import BatchNorm from paddle.fluid.dygraph import Pool2D from paddle.fluid.dygraph import Conv2DTranspose class Encoder(Layer): def __init__(self, num_channels, num_filters): super(Encoder, self).__init__() # TODO:encoder contains: # 3×3 conv + bn + relu # 3×3 conv + bn + relu # 2×2 pool # return features before and after pool self.conv1 = Conv2D(num_channels=num_channels, num_filters=num_filters, filter_size=3, stride=1, padding=1) # 3×3卷积的时候,padding=1的时候,尺寸不会变 self.bn1 = BatchNorm(num_filters, act='relu') self.conv2 = Conv2D(num_channels=num_filters, num_filters=num_filters, filter_size=3, stride=1, padding=1) self.bn2 = BatchNorm(num_filters, act='relu') self.pool = Pool2D(pool_size=2, pool_stride=2, pool_type='max', ceil_mode=True) def forward(self, inputs): x = self.conv1(inputs) x = self.bn1(x) x = self.conv2(x) x = self.bn2(x) # 灰色箭头concat x_pooled = self.pool(x) return x, x_pooled class Decoder(Layer): def __init__(self, num_channels, num_filters): super(Decoder, self).__init__() # TODO:encoder contains: # 2×2 transpose conv, stride=2, p=0 (makes feature map 2× larger) # 3×3 conv + bn + relu # 3×3 conv + bn + relu self.up = Conv2DTranspose(num_channels=num_channels, # 1024->512 num_filters=num_filters, filter_size=2, stride=2) self.conv1 = Conv2D(num_channels=num_channels, # 1024 num_filters=num_filters, filter_size=3, stride=1, padding=1) self.bn1 = BatchNorm(num_channels=num_filters, act='relu') self.conv2 = Conv2D(num_channels=num_filters, num_filters=num_filters, filter_size=3, stride=1, padding=1) self.bn2 = BatchNorm(num_channels=num_filters, act='relu') def forward(self, inputs_prev, inputs): # TODO:forward contains an pad2d and concat # 原论文是input_prev进行crop,这里是对x进行padding,目的一样,就是把保证HW一致,进行concat x = self.up(inputs) # NCHW h_diff = (inputs_prev.shape[2] - x.shape[2]) w_diff = (inputs_prev.shape[3] - x.shape[3]) x = fluid.layers.pad2d(x, paddings=[h_diff//2, h_diff - h_diff//2, w_diff//2, w_diff - w_diff//2]) # axis=1为C。NCHW,把channel concat x = fluid.layers.concat([inputs_prev, x], axis=1) x = self.conv1(x) x = self.bn1(x) x = self.conv2(x) x = self.bn2(x) return x class UNet(Layer): def __init__(self, num_classes=59): super(UNet, self).__init__() # encoder: 3->64->128->256->512 # mid: 512->1024->1024 # TODO: 4 encoders, 4 decoders, and mid layers contain 2x (1x1conv+bn+relu) self.down1 = Encoder(num_channels=3, num_filters=64) self.down2 = Encoder(num_channels=64, num_filters=128) self.down3 = Encoder(num_channels=128, num_filters=256) self.down4 = Encoder(num_channels=256, num_filters=512) # 原论文应该是 3x3 padding=1,stride=1,这里使用1x1卷积 self.midconv1 = Conv2D(num_channels=512, num_filters=1024, filter_size=1, padding =0, stride=1) self.bn1 = BatchNorm(num_channels=1024, act='relu') self.midconv2 = Conv2D(num_channels=1024, num_filters=1024, filter_size=1, padding=0, stride=1) self.bn2 = BatchNorm(num_channels=1024, act='relu') self.up1 = Decoder(num_channels=1024, num_filters=512) self.up2 = Decoder(num_channels=512, num_filters=256) self.up3 = Decoder(num_channels=256, num_filters=128) self.up4 = Decoder(num_channels=128, num_filters=64) # last_conv: channel:64->num_classes self.last_conv = Conv2D(num_channels=64, num_filters=num_classes, filter_size=1) def forward(self, inputs): # encoder layer print('encoder layer:') x1, x = self.down1(inputs) print('input_pred:',x1.shape, 'x_pooled:', x.shape) x2, x = self.down2(x) print('input_pred:',x2.shape, 'x_pooled:', x.shape) x3, x = self.down3(x) print('input_pred:',x3.shape, 'x_pooled:', x.shape) x4, x = self.down4(x) print('input_pred:',x4.shape, 'x_pooled:', x.shape) # middle layer x = self.midconv1(x) x = self.bn1(x) x = self.midconv2(x) x = self.bn2(x) # decoder layer print('decoder layer:') x = self.up1(x4, x) print('up1_input_pred:',x4.shape, 'up1:', x.shape) x = self.up2(x3, x) print('up2_input_pred:',x3.shape, 'up2:', x.shape) x = self.up3(x2, x) print('up3_input_pred:',x2.shape, 'up3:', x.shape) x = self.up4(x1, x) print('up4_input_pred:',x1.shape, 'up4:', x.shape) x = self.last_conv(x) print('out_put:', x.shape) return x def main(): with fluid.dygraph.guard(fluid.CPUPlace()): model = UNet(num_classes=59) x_data = np.random.rand(1, 3, 123, 123).astype(np.float32) x_data = to_variable(x_data) output = model(x_data) output = output.numpy() if __name__ == "__main__": main()
aistudio@jupyter-559108-2508636:~$ python ./work/U-Net.py
encoder layer:
input_pred: [1, 64, 123, 123] x_pooled: [1, 64, 62, 62]
input_pred: [1, 128, 62, 62] x_pooled: [1, 128, 31, 31]
input_pred: [1, 256, 31, 31] x_pooled: [1, 256, 16, 16]
input_pred: [1, 512, 16, 16] x_pooled: [1, 512, 8, 8]
decoder layer:
up1_input_pred: [1, 512, 16, 16] up1: [1, 512, 16, 16]
up2_input_pred: [1, 256, 31, 31] up2: [1, 256, 31, 31]
up3_input_pred: [1, 128, 62, 62] up3: [1, 128, 62, 62]
up4_input_pred: [1, 64, 123, 123] up4: [1, 64, 123, 123]
out_put: [1, 59, 123, 123]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。