当前位置:   article > 正文

LLM之本地部署GraphRAG(GLM-4+Xinference的embedding模型)(附带ollma部署方式)_xinference部署glm-4v

xinference部署glm-4v

前言

有空再写

微软开源的GraphRAG默认是使用openai的接口的(GPT的接口那是要money的),于是就研究了如何使用开源模型本地部署。

源码地址:https://github.com/microsoft/graphrag

操作文档:https://microsoft.github.io/graphrag/posts/get_started/

:1、其实本次操作也可以不用下载源码,使用pip install graphrag 就能将graphrag下载下来变成包,建议大家先跑起来之后,再去看源码,当然这边也会讲讲怎么用源码跑起来

2、要有足够的显存,给大家看看我的使用情况

一、启动GLM-4 

由于GraphRAG默认是使用openai的接口的,而GLM-4使用VLLM提供了相应的接口,这里就不在对GLM-4以及VLLM进行介绍啦,感兴趣的小伙伴可以自己去搜索一下 

GLM-4的github地址: https://github.com/THUDM/GLM-4

huggingface地址https://huggingface.co/collections/THUDM/glm-4-665fcf188c414b03c2f7e3b7

百度网盘链接(glm-4-9b-chat):

链接:https://pan.baidu.com/s/1dSMVbFg8GTfS901MZYOiMw?pwd=o2xt 
提取码:o2xt 
 

下载好之后如下:THUDM是模型存放的文件夹

然后我们执行

pip install uvicorn vllm fastapi

安装好相应的包之后,在GLM-4\basic_demo\openai_api_server.py文件中修改

MODEL_PATH为自己存放模型的所在路径(建议使用绝对路径)

代码默认的host是0.0.0.0,大家可以按需要自己修改想要的IP和端口号

运行如下:

二、启动Xinference

Xorbits Inference (Xinference) 是一个开源平台,用于简化各种 AI 模型的运行和集成。借助 Xinference,您可以使用任何开源 LLM、嵌入模型和多模态模型在云端或本地环境中运行推理,并创建强大的 AI 应用

官网:https://inference.readthedocs.io/zh-cn/latest/index.html

快速安装文档:https://github.com/xorbitsai/inference/blob/main/README_zh_CN.md

Transformers 引擎

pip install "xinference[transformers]"

vLLM 引擎

pip install "xinference[vllm]"

Llama.cpp 引擎

初始步骤:

pip install xinference

不同硬件的安装方式:

Apple M系列:

CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python

英伟达显卡:

CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python

AMD 显卡:

CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python

全部

pip install "xinference[all]"

由于我们前面使用vllm运行GLM-4,所以我们运行 pip install "xinference[vllm]"

后台启动服务

如果是服务器端,得到服务器的IP再改上去运行就可以了

xinference-local --host 0.0.0.0 --port 9997

例如我的就是 xinference-local --host 192.0.0.181 --port 9997 

在浏览器上输入 http://192.0.0.181:9997/

 在 EMBEDDING MODELS 中选一个,我这边选择的是bge-m3 大家也可以选择bge-base-en先尝试尝试,按需求选择

点击小火箭进行下载

下载完成之后会自动跳入Running Models中

三、启动GraphGAG

参考我上面发的GraphGAG操作文档

1、创建目录

mkdir -p ./ragtest/input

 其实就是创建一个目录ragtest,里面会存放input、output、prompts等文件夹,文件存放位置是随便你放哪个位置的

2、下载文档

curl https://www.gutenberg.org/cache/epub/24022/pg24022.txt > ./ragtest/input/book.txt

或者大家自己随便找个txt文件或者小说啥的,塞进去也行

3、初始化

python -m graphrag.index --init --root ./ragtest

 执行的是

如果是跑源码,可以在args = parser.parse_args()之后添加

args.init = True #第一次使用需要先将初始化设置为True
args.root = 'your_path'

当然也可以直接用命令行执行源码

 在ragtest下会多出个目录prompts,里边存放着一些prompts

4、更改settings.yaml 

更改内容如下:对llm、embeddings部分内容进行了修改:

  改动了api_key, model, 增加了api_base,但type不需要变动。

encoding_model: cl100k_base
skip_workflows: []
llm:
  api_key: glm-4
  type: openai_chat # or azure_openai_chat
  model: glm-4-9b-chat
  model_supports_json: true # recommended if this is available for your model.
  api_base: http://0.0.0.0:8081/v1
 

parallelization:
  stagger: 0.3

async_mode: threaded # or asyncio

embeddings:
  async_mode: threaded # or asyncio
  llm:
    api_key: xinference
    type: openai_embedding # or azure_openai_embedding
    model: bge-m3
    api_base: http://192.0.0.181:9997/v1

 5、Running the Indexing pipeline

python -m graphrag.index --root ./ragtest

 在源码上操作需要将上头的args.init = True注释掉,地址还是不变

这是最容易出错的地方了

1、

11:11:54,823 graphrag.llm.openai.utils ERROR error loading json, json=
Traceback (most recent call last):
  File "/home/nlp/graphrag-main/graphrag/llm/openai/utils.py", line 93, in try_parse_json_object
    result = json.loads(input)
  File "/home/anaconda3/envs/nlp/lib/python3.10/json/__init__.py", line 346, in loads
    return _default_decoder.decode(s)
  File "/home/anaconda3/envs/nlp/lib/python3.10/json/decoder.py", line 337, in decode
    obj, end = self.raw_decode(s, idx=_w(s, 0).end())
  File "/home/anaconda3/envs/nlp/lib/python3.10/json/decoder.py", line 355, in raw_decode
    raise JSONDecodeError("Expecting value", s, err.value) from None
json.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)

是因为在graphrag\llm\openai\openai_chat_llm.py 中try_parse_json_object(output)函数中接收的output对应的格式不对,不知道咋描述,大家可以自己瞅瞅

解决办法:

 在graphrag-main\graphrag\llm\openai\utils.py中替换掉try_parse_json_object的定义,如下:

def try_parse_json_object(input: str) -> dict:
    """Generate JSON-string output using best-attempt prompting & parsing techniques."""
    try:
        clean_json = clean_up_json(input)
        result = json.loads(clean_json)
    except json.JSONDecodeError:
        log.exception("error loading json, json=%s", input)
        raise
    else:
        if not isinstance(result, dict):
            raise TypeError
        return result

def clean_up_json(json_str: str) -> str:
    """Clean up json string."""
    json_str = (
        json_str.replace("\\n", "")
        .replace("\n", "")
        .replace("\r", "")
        .replace('"[{', "[{")
        .replace('}]"', "}]")
        .replace("\\", "")
        # Refer: graphrag\llm\openai\_json.py,graphrag\index\utils\json.py
        .replace("{{", "{")
        .replace("}}", "}")
        .strip()
    )

    # Remove JSON Markdown Frame
    if json_str.startswith("```json"):
        json_str = json_str[len("```json"):]
    if json_str.endswith("```"):
        json_str = json_str[: len(json_str) - len("```")]
    return json_str

2、如果输出的output是空的,不妨将max_tokens调小一点

如果出现

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/1000829
推荐阅读
相关标签