当前位置:   article > 正文

递归与尾递归总结_尾递归它本身是一个直接递归同时也是一个二元递归

尾递归它本身是一个直接递归同时也是一个二元递归

 

  前言:今天上网看帖子的时候,看到关于尾递归的应用(http://bbs.csdn.net/topics/390215312),大脑中感觉这个词好像在哪里见过,但是又想不起来具体是怎么回事。如是乎,在网上搜了一下,顿时豁然开朗,知道尾递归是怎么回事了。下面就递归与尾递归进行总结,以方便日后在工作中使用。

1、递归

  关于递归的概念,我们都不陌生。简单的来说递归就是一个函数直接或间接地调用自身,是为直接或间接递归。一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。用递归需要注意以下两点:(1) 递归就是在过程或函数里调用自身。(2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。

递归一般用于解决三类问题:

   (1)数据的定义是按递归定义的。(Fibonacci函数,n的阶乘)

   (2)问题解法按递归实现。(回溯)

   (3)数据的结构形式是按递归定义的。(二叉树的遍历,图的搜索)

递归的缺点:

  递归解题相对常用的算法如普通循环等,运行效率较低。因此,应该尽量避免使用递归,除非没有更好的算法或者某种特定情况,递归更为适合的时候。在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储,因此递归次数过多容易造成栈溢出。

  用线性递归实现Fibonacci函数,程序如下所示:

 

int FibonacciRecursive(int n)

{

    if( n < 2)

        return n;

    return (FibonacciRecursive(n-1)+FibonacciRecursive(n-2));

}

 

递归写的代码非常容易懂,完全是根据函数的条件进行选择计算机步骤。例如现在要计算n=5时的值,递归调用过程如下图所示:

2、尾递归

  顾名思义,尾递归就是从最后开始计算, 每递归一次就算出相应的结果, 也就是说, 函数调用出现在调用者函数的尾部, 因为是尾部, 所以根本没有必要去保存任何局部变量. 直接让被调用的函数返回时越过调用者, 返回到调用者的调用者去。尾递归就是把当前的运算结果(或路径)放在参数里传给下层函数,深层函数所面对的不是越来越简单的问题,而是越来越复杂的问题,因为参数里带有前面若干步的运算路径。

  尾递归是极其重要的,不用尾递归,函数的堆栈耗用难以估量,需要保存很多中间函数的堆栈。比如f(n, sum) = f(n-1) + value(n) + sum; 会保存n个函数调用堆栈,而使用尾递归f(n, sum) = f(n-1, sum+value(n)); 这样则只保留后一个函数堆栈即可,之前的可优化删去。

  采用尾递归实现Fibonacci函数,程序如下所示:

 

int FibonacciTailRecursive(int n,int ret1,int ret2)

{

   if(n==0)

      return ret1;

    return FibonacciTailRecursive(n-1,ret2,ret1+ret2);

 }

 

例如现在要计算n=5时的值,尾递归调用过程如下图所示:

从图可以看出,为递归不需要向上返回了,但是需要引入而外的两个空间来保持当前的结果。

  为了更好的理解尾递归的应用,写个程序进行练习。采用直接递归和尾递归的方法求解单链表的长度,C语言实现程序如下所示:

 

 #include <stdio.h>

 #include <stdlib.h>

 

typedef struct node

 {

  int data;

  struct node* next;

 }node,*linklist;

 

void InitLinklist(linklist* head)

{

     if(*head != NULL)

        free(*head);

     *head = (node*)malloc(sizeof(node));

     (*head)->next = NULL;

 }

 

void InsertNode(linklist* head,int d)

 {

      node* newNode = (node*)malloc(sizeof(node));

      newNode->data = d;

      newNode->next = (*head)->next;

      (*head)->next = newNode;

 }

 

 //直接递归求链表的长度

 int GetLengthRecursive(linklist head)

 {

     if(head->next == NULL)

        return 0;

     return (GetLengthRecursive(head->next) + 1);

 }

 //采用尾递归求链表的长度,借助变量acc保存当前链表的长度,不断的累加

 int GetLengthTailRecursive(linklist head,int *acc)

 {

     if(head->next == NULL)

       return *acc;

     *acc = *acc+1;

     return GetLengthTailRecursive(head->next,acc);

 }

 

 void PrintLinklist(linklist head)

 {

      node* pnode = head->next;

      while(pnode)

      {

         printf("%d->",pnode->data);

         pnode = pnode->next;

      }

      printf("->NULL\n");

 }

 

 int main()

 {

     linklist head = NULL;

     int len = 0;

     InitLinklist(&head);

     InsertNode(&head,10);

     InsertNode(&head,21);

     InsertNode(&head,14);

     InsertNode(&head,19);

     InsertNode(&head,132);

     InsertNode(&head,192);

     PrintLinklist(head);

     printf("The length of linklist is: %d\n",GetLengthRecursive(head));

     GetLengthTailRecursive(head,&len);

     printf("The length of linklist is: %d\n",len);

     system("pause");

 }

 

程序测试结果如下图所示:

 

 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/116137?site
推荐阅读
相关标签
  

闽ICP备14008679号