赞
踩
扩展卡尔曼滤波是利用泰勒级数展开方法将非线性滤波问题转化成近似的线性滤波问题,利用线性滤波的理论求解非线性滤波问题的次优滤波算法。其系统的状态方程和量测方程分别如式(1)、式(2)所示:
式中,X(k)为n维的随机状态向量序列,Z(k)为n维的随机量测向量序列,f(k,x(k))为空气阻力,v(k)、w(k)为零均值的正态(高斯)白噪声序列,其方差分别满足:
协方差的一步预测为:
量测预测值为:
相应的协方差为:
增益为:
状态更新方程为:
协方差更新方程为:
式中,I为与协方差同维的单位矩阵。
二阶扩展卡尔曼滤波的泰勒展开保留到二阶项,其状态的一步预测为:
协方差的一步预测为:
量测预测值为:
协方差更新方程为:
式中,I为与协方差同维的单位矩阵。
1 matlab版本
2014a
2 参考文献
[1]宁倩慧,张艳兵,刘莉,陆真,郭冰陶.扩展卡尔曼滤波的目标跟踪优化算法[J].探测与控制学报. 2016,38(01)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。